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Embedded USB Design By Example 
  

John Hyde 
 
 

Foreword by Fred Dart – Founder and CEO of FTDI. 
 
John Hyde is an internationally recognised and renowned figure in the 
field of USB, having authored the seminal “USB Design By Example” 
series of books which have helped many engineers understand the 
underlying complexity of USB by leading them through a series of 
practical examples.  
 
I am delighted that John has undertaken to author a new book, 
Embedded USB Design By Example, at our behest for those of us 
who would like to incorporate USB interfacing into their product 
designs whilst focussing on overall product development concepts 
rather than  having to learn the intricacies of USB hardware and driver 
development. Written in John’s unique style, this book is intended as a 
supplement to the existing data sheets and application notes on our 
FTDI web site. 
 
Future Technology Devices International Limited, aka FTDI, is a well 
known semiconductor supplier in the USB “legacy” device field. Our 
FT232, FT245 and Hi speed dual and quad device series of USB 
peripheral devices offer a seamless route for easy USB interfacing 
through proven, well understood serial and parallel interfaces. 
Coupled with a commitment to providing royalty free, multi-platform 
USB drivers developed in house to ensure quality and consistency, 
our USB interface solutions can dramatically improve time to market 
for USB product designs eliminating ongoing support costs in driver 
development. 
 
FTDI’s Vinculum Host/Peripheral controller range offers the same 
approach for embedded products that require USB Host capability.  
They bring similar ease of design and development to your USB host 
designs in the same way that our current products have eased your 
USB device products. 
 
For further details of FTDI’s USB solutions, please visit our website 
www.ftdichip.com .
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Chapter 1 Introduction and Essential USB theory 
 

Our electronics industry uses the term “embedded” to 
describe a non-reprogrammable, or fixed function, piece of equipment 
or device.  This book also uses this definition but with an added, more 
literal, meaning.  Most dictionaries define embedded as “enclosed 
firmly in a surrounding mass” and this is the approach that I will be 
taking with “Embedded USB.”  Yes, the designs will have USB inside 
but this is not their main focus.  Most USB books describe USB as a 
technical wonder (which it is) then flood the reader with an 
overwhelming amount of detail.  I am not going to do that, so this book 
will NOT make you a USB technical guru.  What it will do however, is 
describe USB as a tool that you can use to solve a wide array of 
problems. 

 
I assume that you, the reader, have a basic understanding of 

electronics but that this is not your primary job function.  You are 
tasked with building an industry-specific device that is not available 
off-the-shelf (else you would have purchased it and carried on with 
your real job!).  This industry-specific device must interface to a PC 
(defined in this book as a personal computer running a USB-aware 
operating system such as Windows, OS X or Linux) and must 
therefore use an available PC IO connection.  Or you have identified a 
very useful and cost effective PC peripheral, such as a joystick or 
flash drive, which you need to connect to your equipment.  In both 
cases the connection standard is USB.  THIS is what this book is 
about – how can you best utilize this USB connection to solve your 
specific problem.  This book is example based and is divided into two 
parts – the first includes a wide range of example solutions that 
connect to a PC and the second part describes a wider range of 
example solutions that control USB-based PC peripheral devices. 
 
 I toyed with the idea of calling this book “USB for the rest of 
us” in deference to Apple’s campaign around their introduction of the 
Macintosh computer.  For those of you who don’t remember the 
revolution Apple caused in 1984, they positioned the existing Wintel 
PC as difficult to use since you needed to know how it worked to be a 
successful user.  Apple explained how you could be immediately 
productive with a Macintosh since its complexity was hidden behind 
an easy-to-use human interface that used a mouse and graphical 
display.  My goal is similar – I want to show you that you can use USB 
without knowing its intricate details. 
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 In this introductory chapter I review the facets of USB that you 
need to know to be successful.  There have been several books and 
numerous papers written that describe the intricate details of USB, 
but, to be frank, you don’t need to know most of this information to be 
able to use USB successfully.  In the olden days, when USB was first 
introduced, you had to know these details since the available silicon 
components that you would use to implement a USB device were 
quite primitive, but today almost all of the complexity of USB has been 
integrated into fifth generation silicon devices that are straight forward 
to use.  In fact, we will implement all of the examples in part 1 of this 
book without having to refer to the USB specification or other USB-
specific documentation.  We will use the skills you already have, such 
as interfacing with simpler serial buses (RS232, I2C, SPI, etc), and 
with parallel buses (FIFOs, 8051 MCU etc) to create a variety of USB-
based solutions. 
 
USB History 
 But first, a little history.  It is important to know how we got 
here since this will enable us to move forward with more confidence.  
USB was invented in the mid 1990s to solve a specific problem – 
desktop PC peripheral device expansion.  At this time the Wintel PC 
industry was stalled; Intel was producing microprocessors with ever-
increasing performance but this could not be delivered to the 
peripheral devices; everyone wanted to use the Wintel PC as the 
computing engine to drive their custom peripheral device since this 
was cost-effective, but IO expansion in those days meant unique 
boards or connectors and custom device drivers.  It was projected that 
there would not be enough software engineers available on the planet 
to support this expanding and diverging software need. Yes, “plug-
and-play” had started to take hold but the existing PC infra structure of 
parallel ports, serial ports, EISA and PCI buses could not support 
emerging telephony and video-based applications.  Something 
fundamentally different was required. 
 
USB Architecture 
 The first USB design decision was to assign another 
microprocessor to handle the increasing IO load – this USB host 
controller would manage all of the low-level interactions of the 
peripheral devices thus freeing up the main CPU to process user 
applications data.  USB would be a master-slave bus with a single 
master, the USB host controller, and multiple slaves, the IO devices.  
Most of the communications complexity would be implemented in the 
host controller, since there was only one, and this would allow the IO 
devices to be simpler and therefore lower cost.  It was decided that 
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the USB host controller would have a 1ms scheduling period and that 
data transfers could be synchronized to this period – this would enable 
time-based data (audio and video for example) to be supported.  The 
host CPU would generate lists of data transfers for each upcoming 1 
ms time interval and the USB host controller would implement the data 
transfers on the host CPUs behalf.  Once the host controller 
specification was agreed it was implemented as a fixed-function ASIC.  
This functional partitioning and standardization of IO functions 
prompted a new device driver model that enabled the low level USB 
data transfer mechanisms to be the same across a wide variety of 
peripheral devices – the diverging device driver problem had been 
contained! 
 
 As USB evolved so did the USB Host Controller specification.  
There are now three specifications (UHCI, OHCI, and EHCI) and there 
will soon be a fourth (XHCI).  All are well defined with specifications 
downloadable from the web and all have been implemented in silicon.  
Each has proven and, in the case of Wintel PCs, WHQL certified OS 
device drivers.  But the USB development team did not stop there – to 
ensure that the U in USB really meant Universal they divided the 
diversity of known and upcoming USB devices into CLASSes and then 
defined a set of standardized class interfaces above the standardized 
host controller interface.  Microsoft, Apple, the Linux community and 
several silicon vendors then went about implementing a wide breadth 
of standardized drivers.  The benefit to the IO device developers is 
enormous – if they implemented the interfaces on their devices to 
match the USB class specifications then they would operate 
immediately with all operating systems that implemented the class 
driver.  These standardized implementations mean that a keyboard, 
modem, flash drive, printer, etc can be moved around different 
platforms and will continue to perform as designed.  Also, since all 
communications is protocol based it will be simple to swap out the 
hardware device with something faster, cheaper, or more capable.  
Software did not have to be redone so the large investment in 
applications software could be preserved. 
 

I have taught USB to many people and a great number get 
hung up on a key diagram from the USB specification – Figure 5.9 
reproduced (with permission) as my Figure 1.1.  It is essential that you 
understand this figure so let’s study it for a moment since it unlocks 
much of the insight required to conquer USB and use it as a tool. 
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Figure 1.1: USB structure from USB specificationRef 1 
 
 

Figure 1.1 shows two dotted boxes, Host and Physical 
Device, interconnected with a USB wire.  It is important to realize that 
the Host (typically a PC) contains two or more CPUs and the Physical 
Device contains one or more CPUs – these CPUs can be 
reprogrammable (like the x86 Intel Processor in today’s PC) or fixed 
function implemented as a ASIC (like the USB Host Controller) but 
note that they are smart.  And we have a smart USB interconnecting 
this smart multi-CPU environment.  It all looks a little daunting but, fear 
not, you do not need to know exactly how this all works to be 
successful using USB.  

 
Figure 1.1 is a run-time diagram – it assumes that the 

connection between the Host and the Physical Device has already 
been set up (this is described later in this chapter).  Data transfer 
starts with the Host so, as an example, let’s send an ASCII string 
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“Hello World” from the Host to the Physical Device.  We inject this 11-
byte array into the Client SW block using a system call such as 
WriteFile( ).  The Client SW may break our data into multiple buffers 
as it sends it to the USB System SW block.  Note that this USB 
System SW block is receiving data transfer requests from many 
instantiations of Client SW blocks within different applications running 
on the PC.  USB is a shared media but each application program 
treats it as a personal data connection; it is the USB System SW that 
manages the multiple data transfer requests from all of the Client SW 
blocks and it constructs a table of the Transfers necessary to service 
all of the requests.  The USB System SW calculates the needed data 
transfers using a 1ms-scheduling period.  The PC’s x86 processor 
then passes this list of USB Framed Data to the USB Host Controller. 

 
The USB Host Controller manages the low-level signaling on 

the USB wire.  It embeds our “Hello World” user data into one or more 
Transactions using asynchronous packets, which also includes 
SYNC data, device addressing data and error checking data.  The 
Serial Interface Engine (SIE in Figure 1.1) handles automatic error 
retries which results in reliable data transfer between the Host and the 
Physical Device.  The USB Interface on the Physical Device monitors 
all traffic on the USB wire and if it detects a packet with its assigned 
address then it absorbs and checks the packet and passes validated 
packets up to the USB Logical Device.  The USB Logical Device will 
pass user data packets up to the Function Block and our “Hello 
World” data will appear at the top of our Physical device. 

 
Now focus on the horizontal bars called Pipe Bundle in 

Figure 1.1.  The Host pushed the “Hello World” data into the top of the 
Host stack and it popped out of the top of the Physical Device stack.  
It appeared to travel through the horizontal Pipe Bundle.  In reality it 
went all down the Host stack, across the USB wire and all the way up 
the Physical Device stack but we need not be concerned about this.  
The lowest level of Figure 1.1 (USB Interface, SIE and Host 
Controller) is fully defined by the USB specification and is 
implemented in fixed-function silicon.  The center layer is also fully 
defined by the USB specification and is implemented in software, 
firmware or hardware (the Default Pipe is used for Link Management 
and is described later).  The upper level is also fully defined by the 
USB specification and therefore, like the other layers, you have no 
flexibility to change it.  It is interesting to know how this CPU-to-CPU 
communications is implemented but this knowledge is not necessary 
to use USB – if you accept that data effectively moves from a buffer in 
the Host system into a buffer in the Physical Device system (and visa 
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versa) then the key questions are; what is the latency, and what is the 
data throughput.  We will address these questions in the examples 
chapters. 
 
 You could ask “but how do I differentiate my product within 
this standardized market place?”  If you have the time and funds you 
can implement using “vendor defined” interfaces which are included 
within the USB specification as an option.  But while you are moving 
along this difficult and time-consuming path don’t be surprised if your 
competitor introduces a similar product using a collection of standard 
drivers and captures most of the available customer base.  I am a 
STRONG advocate of OS-supplied and vendor-supplied drivers and 
always recommend that everyone use this route.  I maintain that you 
need an extremely compelling reason to embark on writing your own 
device driver; most people don’t. 
 
 The second major design decision made by the USB creators 
was the interconnection scheme.  For ease of implementation and 
lowest cost, a 4-wire, serial, point-to-point connection, as shown in 
Figure 1.2 was chosen.  A USB cable has an ‘A’ end (upstream 
connector, towards the host) and a ‘B’ end (downstream connector, 
towards the device).  The ‘A’ connector included a +5V power source 
that could be used by a peripheral device and this could eliminate the 
need of many devices to include their own power (from a wall wart for 
example).  There are rules to the amount of power that can be 
supplied and these are discussed later.  The two signal wires are a 
half-duplex, differential pair that are generally driven by the host 
controller – the direction is switched when the host needs to read from 
a device. 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.2: USB is a 4-wire, serial, point-to-point connection 
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 Three standard signaling speeds are defined; low at 
1.5Mb/sec, full at 12Mb/sec and high at 480Mb/s.  There is a fourth 
option, SuperSpeed at ~5Gb/s, currently being developed by the USB 
Implementers Forum (USB IF).  Information is transferred using 
asynchronous packets and these are combined with base protocols to 
implement four types of data transaction: control, interrupt, bulk, and 
isochronous.  The USB specification also includes error checking and 
recovery mechanisms such that USB provides reliable data transfer – 
better still, this has been implemented in silicon by a variety of 
vendors so there is little reason to know every nuance.  The USB IF 
has Compliance and Compatibility tests that silicon vendors must pass 
and this guarantees that the components we buy adhere to the USB 
specification.   
 
 Figure 1.2 shows a single USB Link connecting a USB host 
controller to a USB device.  The host is required to support all three-
link speeds (note that USB 1.1 compliant hosts will only support low 
and full speeds) and it is the device that selects the link speed.  The 
USB specification includes link management commands that allow the 
host to interrogate the device to discover its identity and its 
capabilities.  When the device is first connected, the host sends 
control transactions to the device to read pre-defined data blocks 
called Descriptors, an example of which is shown in Figure 1.3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.3: Descriptors are fixed-format blocks of data 
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The host operating system uses this descriptor information to 
determine which device driver should be used for each specific device 
and to assign a unique address to each attaching USB device.  This 
process is called Enumeration and the requirement that each USB 
device is self-identifying is a major contributor to the plug-and-play 
and ease-of-use of USB.  Most devices today implement the 
enumeration process in silicon or in canned firmware. So, once again, 
there is little need to understand every detail. 
 
Importance of a USB hub 
 An integral part of the USB specification is a special device 
called a hub – this provides several bi-directional data repeaters and 
power injection as shown in Figure 1.4.  This figure shows a USB 1.1 
full/low speed hub since this is easier to explain (I cover a USB 2.0 
high/full/low speed hub next).  The hub contains a fixed-function USB 
device and the descriptors of a typical hub are shown in Figure 1.5.  
When this device is first attached to the host the operating system 
enumerates it and discovers that it is a hub – it therefore loads a hub 
device driver.  This hub device driver manages the downstream 
connections.  It applies power to each downstream port in turn and 
checks to see if a device is attached – an attached device will change 
the DC state of the data lines.  If a device is detected then the hub 
device connects the downstream port to the upstream port and the 
host enumerates this new device – from this stage onwards the new 
device does not know that it is connected to the host via a hub, this is 
a transparent connection (yes, there is a small propagation delay 
through the hub but this is allowed for in the spec).  The new device 
operates as if it were directly connected to the host.  If the new device 
was another hub then the process would repeat – the USB 
specification allows for hubs up to five deep, which gives a lot of 
connectivity. 
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Figure 1.4: A USB hub provides connectivity 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.5: Descriptors for a basic hub 
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 The hub also allows for the injection of power into 
downstream ports.  The USB specification details several power 
levels; when first connected a device can draw up to 100mA from the 
upstream connection; during enumeration the device can request up 
to 500mA (if your device needs more then 500mA then it will need its 
own power source); when suspended, or not operating, a device must 
limit its power drain to less than 2.5mA – a PC may suspend itself and 
power down when not in use, and there is no point in having 
peripheral devices powered up when the PC is off.  So the USB host 
controller will suspend all attached devices prior to powering down. 
 
 The basic functionality of a USB 2.0 hub, as shown in Figure 
1.6, is the same as a USB 1.1 hub.  Additional circuitry is included that 
enables more efficient use of the USB Links.  A high-speed link 
always runs at high speed – if a low or full speed device is connected 
to a high-speed hubs downstream port then data transfers are “stored-
and-forwarded.”  The data packets are sent at high speed from the 
host to a Transaction Translator (TT in Figure 1.6), which will then 
send the packet at low or full speed to the device.  Similarly responses 
are collected at low or full speed by the TT and forwarded to the host 
at high speed.  These operations require additional link management 
commands (Start Split etc.) and these are implemented by the EHCI 
hub driver at the host.  There is no additional programming at the PC 
application layer nor at the device so these operations are transparent 
to the device and to the user. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.6: A High-Speed hub includes Transaction Translators 



© 2010, John Hyde, USB Design By Example                 Revision 2.01 Page 17 

 Figure 1.7 shows a typical PC system with a variety of devices 
attached via hubs.  Each EHCI host controller will support a 
480Mb/sec link and this bandwidth is shared by all of the devices 
connected via this link.  Each OHCI/UHCI host controller will support a 
12Mb/sec link and again this bandwidth is shared by downstream 
devices.  A PC typically has multiple host controllers; the laptop I am 
using at the moment has an Intel ICH9 controller which includes 6 
UHCI controllers and 2 EHCI controllers.  The ICH9 also has on chip 
routing and the operating system will assign a UHCI controller to 
manage low/full speed devices and it reserves the EHCI controller 
connections for high speed devices.  If the OS cannot route an EHCI 
controller to the port where a high speed device is connected it will 
prompt the user to move the device and plug it in elsewhere.  
Therefore this particular laptop can support up to 
6*12+2*480=1Gb/sec of USB bandwidth. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.7: Typical PC with several hubs 
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Chapter Summary 
 In summary, USB is a shared communications media where 
multiple host controllers can be used to supply a desired IO 
bandwidth, and multiple hubs can be used to distribute this bandwidth 
to a diverse array of peripheral devices.  All communications is 
standards-based and is implemented as a collection of proven class- 
and host controller drivers.  The lower levels of this communication 
are implemented in fixed-function silicon.  Since most of USB is 
standardized (and therefore cannot be changed) and most products 
are certified to be compliant to the USB specification then we can trust 
that USB works and focus our efforts on using USB to implement 
useful products. 
 
 So enough theory, lets implement something!!! 
 
 Part 1 focuses on designing IO devices that can be attached 
to a PC.  I created a common source code for the Windows and Mac 
platforms, and I expect Linux users will be able to use the Mac OS X 
code with little or no modifications.  I had to put an OS-specific 
#DEFINE to accommodate differences in library and some function 
names but, fundamentally, the SAME example code is running on all 
platforms.  This is possible since FTDI provide their device drivers on 
all three platforms.  I will focus on functionality and ease of 
understanding and not on the human interface so the code will be 
fundamental and written in portable C++.  A set of PCBs is available 
(see Appendix B) to simplify working through the examples but if you 
don’t have these then most of the examples can also be built up on a 
solder-less breadboard. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Ref 1: USB 2.0 Specification © 2000 Compaq, Hewlett-Packard, Intel, Lucent, 
Microsoft, NEC, Philips.  A free download is available from 
www.usb.org/developer.
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Chapter 2 – A starter USB project 
 
 Let’s start simple; you want to connect a single push button to 
a PC.  On recognizing the button press, a program running on the PC 
initiates a series of actions one of which lights an LED adjacent to the 
push button (in case the PC is remote or does not have a screen, the 
LED provides feedback to the user that the button press has been 
recognized).  This project could form the basis of an embedded kiosk, 
machine operation, sequence control, security monitoring or a range 
of other man-computer interactions.  This project used to be easy 
when the PC had a parallel port but all you see now are USB ports!  
But you don’t have time to learn USB, so you look online to buy a 
USB-to-ButtonAndLight adaptor that you can just use.  Nobody sells 
one.  HELP!!! 
 
 Fortunately FTDI sells and supports a USB-to-4BitIOport 
cable that can be used to solve this problem.  FTDI don’t call it that 
(they call it a TTL-232R) but that is how we shall use it and it is shown 
in Figure 2.1.  It looks like a standard USB cable until you look closely 
at the non-USB end – there are six wires instead of the expected four.  
Two are power (+5V) and ground and the other four are TTL signals 
that can be configured as inputs or outputs.  There is a fixed-function 
USB device molded into the plug but more of this later. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.1:  The TTL-232R is a USB-to-4BitIO port cable 
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 I’ll discuss HOW this works in a few pages time but, for now, 
let’s WATCH it work.  We learnt from Chapter 1 that all devices need a 
device driver – so download a driver for your operating system (OS) 
from www.ftdichip.com/FTDrivers.htm and load it on your PC; refer to 
Appendix A which includes instructions of how to do this for each 
supported operating system.  FTDI has two sets of drivers and for the 
first few examples we need the D2XX driver so use that if your OS 
only allows a single driver for the FTDI device. Now plug the USB-end 
of the cable in to the PC; the OS may indicate that a new device is 
being added and it will match it with the device driver loaded in the 
previous step and this will be installed so that the OS can use it.   
 
 Figure 2.2 shows a schematic of our first example and shows 
this circuitry mounted on the first PCB. The button is connected on 
Bit3 which is pulled high by a 200K Ohm resistor inside the cable; this 
bit will therefore be read as a high unless the button is pressed when it 
will read as a low.  The LED is connected on Bit2 and will be lit when 
this bit is driven high and will be off when this bit is driven low.  Note 
that the resistors shown with dotted lines are included within the cable 
and Bit0 and Bit1 are not used in this example. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.2: The first example, schematic and hardware 
 
 Figure 2.3 shows an edited version of the source code of our 
first example - I removed the error-checking for clarity but this is 
included in the supplied example1.cpp. Let me first explain the three 
helper routines, InitializeForBitIO, WriteBits, and ReadBits, that will 
allow the main loop to be written more simply. 
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  The OS enumerated the FTDI component in the cable when it 
was attached and it has been added to the OS-internal plug-and-play 
tables. The FT_ListDevices system call queries these plug-and play 
tables and returns a DeviceCount of matching FTDI devices which 
are currently attached - my code assumes that we only have one of 
these cables attached. The FT_Open system call gets a handle for 
this device that can be used in later system calls. The 
FT_SetBitMode selects which pins are input, which are output and 
sets operation to Synchronous Bit Bang mode. The WriteBits routine 
is an FT_Write of one byte to our device and the ReadBits routine is 
a similar FT_Read.   ReadBits returns the inverted value of the pins 
since a button press is active low.  
 

 
BOOL InitializeForBitIO(void) { 
 FT_CreateDeviceInfoList(&DeviceCount); 
 if (!DeviceCount) return printf("No FTDI devices\n"); 
 FT_Open(0, &FT_Handle); 
 FT_SetBaudRate(FT_Handle, 921600); 
 FT_SetBitMode(FT_Handle, 4, SyncBitBang); 
 return 0; 
 } 
 
UCHAR ReadBits(void) { 
 UCHAR Value; 
 DWORD BytesRead; 
 FT_Status = FT_Read(FT_Handle, &Value, 1, &BytesRead); 
 return ~Value; 
 } 
 
void WriteBits(UCHAR Value) { 
 DWORD Written; 
 FT_Status = FT_Write(FT_Handle, &Value, 1, &Written); 
 } 
 
int main(int argc, char* argv[]) { 
 if (InitializeForBitIO() == 0) { 
  while (1) { 
   WriteBits(LED_Off); 
   Idle(100); 
   while (ReadBits() & Button) { 
    WriteBits(LED_On); 
    Idle(100); 
    } 
   } 
  } 
 FT_Close(FT_Handle); 
 return 0; 
 } 

 
Figure 2.3: Edited source code of first example 
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  The main loop polls the button every 100 ms and, if it is 
pressed, it will turn on the LED. The main loop will run until a 
Control+C is entered on the PC keyboard. 

 
Let’s run the program and watch it work. 

  
Pause here while you run the program. 
 
Now marvel at its simplicity.   
 
So adding a push button and LED to the PC using USB wasn’t 

difficult after all.  If you don’t like the gauge or the length of the cable 
you can just purchase the “plug + electronics” and add your own cable 
and case.  The electronics supports 4 IO lines and these can be any 
combination of buttons and LEDs.  Notice that you didn’t see any 
descriptors or had to deal with any USB-ness at all.   
 
 
How it works 
 The heart of the electronics, embedded within the plug of the 
FTDI cable, is an FT232R which is a self-contained, USB-ByteMover 
device.  The block diagram, shown in Figure 2.4 shows the main 
elements of the FT232R. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.4:  Block diagram of FT232R USB-ByteMover device 
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The USB Interface, with the aid of data within the EEPROM, 
enumerates with the PC host and selects FTDI’s drivers.  USB data 
packets are delivered to the RX FIFO and are then routed to the 
programmable IO pins using the EEPROM Configuration, Selected 
Mode and BaudRate generated from the CLOCK circuitry.  The 
FT232R supports 3 data routing modes: Synchronous BitBang, 
Asynchronous BitBang and UART which supports RS232, RS422, and 
RS485 protocols with full modem control signals.  The programmable 
IO pin block is expanded (twice!) and shown in Figure 2.5; each pin 
can be set as input or output, can be programmatically inverted and 
have higher drive current.  An FTDI utility program, called FT_PROG 
(described in Appendix A) is used to set power-on parameters in the 
EEPROM.   Similarly data can be routed from these programmable IO 
pins, including the UART protocols, to the TX FIFO where the FT232R 
collects this data, moves it to the PC and queues it ready for the 
FT_Read function.  The FT232R handles all of the USB protocol on 
your behalf; bytes are moved between the PC application program 
and the programmable IO pins neatly and efficiently and the only 
reason to ponder about the actual data transfer is a concern about 
performance.  In the examples in this chapter the performance 
bottleneck will be the IO speed at the programmable IO pins and this 
will be examined in later chapters.  The performance limiter in this first 
example is the 10Hz human user – the USB operations are in the 
millisecond range and will be considered ‘instantaneous’ by the user. 
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Figure 2.5A:  Showing detail of ABUS data routing 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.5B:  Showing detail of programmable IO pins 
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Returning to the first example, we are using synchronous bit-
bang mode so WriteBits copies the data byte into the RX FIFO which 
strobes data, at baudrate, directly to the IO pins.  At the same time, 
the data on the IO pins is strobed into the TX FIFO and then delivered 
to the application program via ReadBits.  Note that a WriteBits 
function is required before a ReadBits function can be used and note 
that they are paired to keep the read data in sync with the write data. 

 
  

Getting more IO lines 
  Although the FT232R supports 12 programmable IO lines, 
only 4 are brought out on the TTL-232R cable.  Our first example 
could be easily expanded to include any combination of up to 4 
buttons and LEDs, and although it makes a great demo, it is a limited 
solution that can only solve a few problems.  We need a solution that 
supports at least several bytes of IO.  Figure 2.6 shows the schematic 
of a low cost component added to the non-USB end of the cable that 
will support up to 8 bytes of IO in any combination of inputs and 
outputs. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.6: Adding an I2C IO expander to the cable 
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Rather than use the four programmable IO lines statically we 
are going to drive them with an I2C protocol and thus take advantage 
of the wide range of available I2C components.  I chose I2C as an 
expansion bus since this is a multi-drop, 2-wire bus with a well-defined 
protocol that includes device addressing as well as data transport.  
This choice will allow me to easily expand the solution for later 
examples.  I2C is a 2-wire bus but I need to use 3 connections from 
the cable since Output and Input functions are on two separate pins.  
One pin is used as DataClock or SCL.  I must keep my DataOut pin 
high when the I2C device is driving SDA low so that this can be 
detected by my DataIn pin. 

 
Let’s first consider the case where I have eight buttons 

connected to the PCA9554 component.  Let’s also assume that I have 
pre-selected register 0 using a command byte write such that an I2C 
read command will read the input pins. I have redrawn figure 10 from 
the PCA9554 data sheet as my Figure 2.7 to show the waveform that 
must be generated. In particular, I have separated out the wired-OR, 
I2C SDA line into my DataOut and DataIn lines so that it is easier to 
see who is driving this shared line. 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.7: Waveform needed to read an I2C byte 
 
 As you can see, each I2C bit transition needs three byte 
writes so, with an eight bit command, one bit ACK, eight bit data read, 
and a one bit STOP this will result in 54 bytes that need to be written 
to the FT232R. Example2 calculates this byte stream at run time and 
sends it to the RX FIFO where it is clocked out at the selected 
baudrate. The PCA9554 can operate at up to 400 KHz and the 
baudrate must be chosen to meet the minimum timings of their part. 
The limiter is a clock low time of 1.3!s which means a baud rate 
divisor of 4, or 5 with some margin.   
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The PCA9554 sub address is also calculated at run time and 
this three bit address field allows up to eight of these components to 
be used. This results in an easy expansion up to eight bytes of digital 
IO.  Figure 2.8 shows example 1 built on a solder-less breadboard.  
There are many products available but I use the range from Elenco 
Precision since they are built from modules that may be reconfigured 
to give a better layout area.  Figure 2.8 shows two PCA9554’s, one 
with buttons implemented with a DIL switch and one with LEDs 
implemented with an LED bar graph. 

 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.8: 2-way I2C bus expansion using PCA9554 
 
 Figure 2.9 shows a hardware variant of example 1.  The 
Microchip MCP23008 has the same capability as the PCA9554 
(actually, it has a lot more, but my example does not use this) and a 
better pin-out for this example; it allows 4 ports in about the same area 
and I chose 4 large seven-segment displays.  You could easily add 
4x8 = 32 buttons to this example, enough for most control panels. 
  
 The breadth of I2C components also allows us to have analog 
in and analog out modules using the Analog Devices AD799X or 
AD53X1 for example. These boards could be used standalone or 
could be used in conjunction with the buttons and LED boards. There 
are also sophisticated ICs such as TV tuners, sound processors and a 
wide range of multi-media circuits available with an I2C control 
interface.  So, with this cable and a few standard components I can 
simply access up to 64 bits of digital IO and several analog channels - 
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enough for many control panels, system configuration, or even a 
distributed data gathering system.  We are using PC software to bit-
bang an I2C interface and this is implemented in a modular, 
expandable program called Example2.cpp. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.9: 4-way I2C bus expansion using MCP23008 
 

 
Chapter Summary 
 

This chapter has shown that is it easy to attach simple IO to a 
PC using USB. We used an FTDI TTL-232R cable to first drive 
discrete buttons and LEDs then, with the help of some low cost I2C 
components, we connected up both digital IO and analog IO to a PC. 
The USB cable also supplied the power source for our components.  I 
have this up and running and I didn’t have to even open the USB 
spec!  All the USB-ness is handled by the FTDI device and the device 
driver, allowing me to concentrate on my application.  
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Chapter 3 - Serial and parallel device conversion 
 

The embedded world still uses serial ports and parallel ports 
because they are easy, especially when compared with USB! A serial 
port uses just two data wires, TX and RX, for full duplex 
communications and a reference ground wire is also essential. Serial 
ports became popular with the introduction of modems in the 1977 
and the RS232 standard also includes modem control signals such as 
DataSetReady and DataTerminalReady. The signaling levels are +/- 
12 V and this tends to limit the maximum data rate to 56KBaud. Once 
both ends of the wire agree on the baud rate it is a simple matter to 
send and receive any stream of data bytes. 
 

Unfortunately the simplicity of exchanging any stream of data 
bytes is also the serial ports Achilles heel. Most serial links also need 
to exchange some control information and this is embedded in the 
data stream using some kind of escape sequence. This, by itself, is 
not a bad technique - the issue is that there is no standard escape 
sequence which results in applications software being tied to a 
specific piece of hardware. Again, this is not a major problem except 
that there is no standard way for the application software to identify 
the attached hardware. 
 

The real problem comes when you want to attach your serial 
device to a PC and you discover that there are no serial ports! PC 
hardware changes more rapidly than a typical embedded system, and 
if we are to take advantage of 'PC economics' then we need to follow 
their trend. 
 

PC software has also changed dramatically. The first PCs 
introduced by IBM were well documented and all of their internal 
hardware was exposed via BIOS listings. You were actually 
encouraged to access the serial ports at 0x3F8 and 0x2F8. This all 
changed with the introduction of 'protected mode' Windows where 
applications software was prevented from accessing the physical 
hardware. The same is true today about Mac OS X and Linux. All 
three operating systems support multi-tasking and multi-applications 
so they must own the underlying PC hardware so that they can 
manage its use. The impact to the embedded developer is that the 
serial ports must be accessed via a device driver - in Windows this is 
COMxx, and in Mac OS X and Linux, this is /dev/tty. Once you 
encourage the OS to supply a handle to a serial port then you can 
read and write streams of data bytes from and to the serial port. 
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Representative Serial Device 
So let’s work through an example of converting a serial device 

to a USB device. My representative device is a serial display from 
www.robokits.co.in, as show in Figure 3.1.  You can download a user 
manual from their web site but it is basically a 2 line by 16 character 
display that accepts ASCII characters through a 9600 baud serial 
connection. Non-displaying characters (0x00..0x1F and 0x80..0xFF) 
are interpreted by the on-board micro-controller to implement special 
functions such as the setup and display of custom characters and 
turning the backlight on and off.  I have used this display on many 
embedded projects since it is low cost and only needs a single IO pin 
to drive the display. Adding it to an embedded PC would be much 
cheaper than a VGA display for those applications that only needed 2 
lines by 16 characters or it could be a remote display in addition to the 
main display. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.1:  Representative Serial Device 
 

Rather than create a custom example program for this chapter 
I thought it more convincing to use software for the PC that is already 
available and designed to support serial ports. For the Windows PC I 
shall use HyperTerminal and for the Mac/Linux PC I shall use 
CoolTerm (download from http://freeware.the-meiers.org/).  Using the 
same TTL-232R cable introduced in chapter 2, first connect the non-
USB end of the cable to the display as shown in Figure 3.2.  We are 
using the cable to power the display and have TXD looped back to 
RXD. 
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Figure 3.2:  Connecting the FTDI cable to the display 
 
Windows PC operation: 

The FTDI drivers that we installed in chapter 2 includes two 
distinct interfaces, D2XX which we used to access low level functions 
and VCP, a Virtual Com Port interface. The windows driver supports 
both interfaces in a single installation, called CDM, but only one may 
be used at a time. If you have not installed this driver, do it now. 
 

Insert the TTL-232R cable into your PC and then display the 
hardware configuration using the Device Manager in the system 
control panel. My configuration is shown in Figure 3.3. Note that the 
cable enumerated as a COM port - mine happened to be assigned as 
COM11 and yours will probably have a different number.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.3:  The cable is recognized by Windows as a COM port 



© 2010, John Hyde, USB Design By Example                 Revision 2.01 Page 32 

Spin up HyperTerminal in the accessories directory and select 
the COM port that has been assigned to the TTL-232R cable. Now 
jump to the ‘Configure the terminal program’ section on the next page. 

 
 

Mac Operation 
Life is a little trickier for the Mac user since the FTDI drivers 

are not combined. We installed the D2XX driver in chapter 2 and it is 
now time to install the VCP driver.  Decompress the 
FTDIUSBSerialDriver.dmg file that was downloaded from FTDI’s web 
site and click on FTDIUSBSerialDriver package and follow the 
installation instructions. 

 
Insert the TTL-232R cable into your PC and the OS will 

preferentially choose FTDI's VCP driver. Figure 3.4 shows the output 
of the System Profiler tool and, as seen, it lists the FTDI cable 
connected to USB.  

 

 
 

Figure 3.4:  The cable is recognized by Mac OS X as a COM port 
 

Now spin up CoolTerm and select the usbserial device. 
 



© 2010, John Hyde, USB Design By Example                 Revision 2.01 Page 33 

Configure the terminal program 
Choose 9600 baud and open a connection. Type "Hello 

World" then note that this also appears on the 2 line display.  We're 
basically done!  Yes, we are using USB but it is embedded.  In fact, it 
is embedded so deeply that we haven't even been exposed to any 
USB at all. All of the USB aspects have been handled by the cable 
and by FTDI's VCP driver. 
 

So conversion of a serial device to a USB device is almost 
trivial if we use this TTL-232R cable and driver from FTDI. All of the 
hard work is being done by the operating system and its drivers - they 
are handling the differences in hardware and we, at the application 
program level, need not be concerned about exactly how this is being 
accomplished. 

 
 

Switching back to the D2XX driver. 
The D2XX driver is always available to the Windows user so 

you may skip this section. The Mac OS X user can temporarily or 
permanently remove the VCP driver as follows; use the Terminal 
application and view the system extensions to identify the system 
name of the FTDI cable: 

cd /System/Library/Extensions 
ls 

 It will probably be FTDIUSBSerialDriver.kext.  You can 
remove it for the current session with: 
 sudo kextunload FTDIUSBSerialDriver.kext 
 To permanently remove it (which will mean reinstalling the 
package if you wish to use the VCP driver again) use: 
 su 
 rm –R FTDIUSBSerialDriver.kext 
 
 
Optimizing the serial connection 

Now, before you rush out and make a volume purchase of this 
cable let us look at a few optimizing steps.  My serial display is not 
typical in that it used TTL levels rather than RS232 voltage levels. The 
top of Figure 3.5 shows a more typical serial device.  It has an internal 
microprocessor or microcontroller that drives an RS232 voltage 
converter for PC communications and drives custom IO specific to the 
embedded application. 
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In the center diagram of Figure 3.5 I have replaced the serial 
cable with the FTDI cable.  This cable drives TTL levels so there is no 
need for the RS232 voltage converters.  We have a problem with the 
connector however since the industry expects RS232 voltage levels 
on the 9 pin (or 25 pin) serial connector.  I shall deal with this issue in 
a moment. 
 

Now look at the third diagram in Figure 3.5 - I have moved the 
FT232R part from the “PC end” of the cable to the “device end” of the 
cable.  This FT232R part replaces the RS232 voltage converter and I 
replace the serial port connector with a USB B connector (standard 
size or mini-B).  This means that I use a standard USB cable to 
connect my new device to the PC.  Another advantage of having the 
FT232R at the 'device-end' of the cable is that you have access to all 
12 IO lines. We shall look at these in the next chapter. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.5:  Converting a serial device 
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Total conversion effort is less than a day. We migrated a 
serial device into a USB device.  But what else did we gain besides a 
product that is likely to sell better? 
 

If needed, we could increase the baud rate to the device.  
Standard serial cables can easily support 56 Kbaud and some can do 
192 Kbaud.  The FT232R can run at 3,000 Kbaud due to the higher 
data transfer rate of USB.  If your device moves a lot of data then this 
“upgrade” would be worth implementing. 
 

A USB cable can also supply up to 500mA at 5V.  If your 
device can operate at or below this power level then you could 
eliminate the power source from your device and thus reduce its 
manufacturing cost.  And since you will charge more for a USB 
version then you get a double cost benefit as well as a simpler 
product.  This is also “low hanging fruit” and is easy to implement. 
 
 
Converting a parallel device to USB 

FTDI have a trio of “USB-ByteMovers” that can be used in this 
type of application.  So far we have been using the FT232R that has a 
serial interface.  A companion part, the FT245R replaces this serial 
interface with a parallel bi-directional FIFO interface for higher data 
throughput rates.  Converting a parallel interface device to a USB 
device follows the same methodology as the serial device.  From an 
applications software perspective you still treat it as a serial port but 
otherwise the software is un-changed.  You can also reap the higher 
speed, and USB-provided power, benefits of the serial port conversion 
example.  A dual-channel part, the FT2232D, is also available: the two 
channels can be individually programmed to operate as an FT232R or 
an FT245R or they can be combined to produce higher capability 
interface. 
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Chapter Summary 
In this chapter we used FTDI’s VCP driver that presented the 

USB device as a COM port. While this is convenient as a transition 
strategy it does not address the serial ports Achilles heel of device 
identification. If you have multiple devices and chose the wrong COM 
port number then your application software will fail, just like it did in the 
olden days when using real COM ports. The VCP driver does such a 
good job of hiding the underlying hardware details that some 
necessary information for a multi-device system is also hidden. I 
would recommend using the VCP driver as an initial step but migrate 
to the D2XX driver in the longer term since it has more capabilities. 
 

Each FTDI component has an integrated, or attached, 
EEPROM that includes a unique ID programmed during the 
manufacturing process. A custom Vendor ID (VID), Product ID (PID) 
and friendly name can also be programmed into this EEPROM (Using 
FT_PROG, described in Appendix A) and any combination of these 
parameters can be used to specify which particular device of a Multi-
USB device system should be opened by an application program. 
 

Now that we know how easy it is to have multiple devices the 
next chapter will look at more capable devices. 
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Chapter 4 - Connecting to more capable devices 
 

Chapter 2 showed that the bit-banged IO pins of the FT232R 
could be used to create a 400KHz I2C expansion bus and enabled 
this component to solve a wider set of digital IO and analog IO 
problems. FTDI has taken this fundamental IO expansion concept a 
major step forward and integrated two FT232Rs with more capability 
and bigger FIFOs into a USB high speed FT2232H product, a block 
diagram of which is shown in Figure 4.1. Note that the FIFOs are 32 x 
bigger!  The I2C bus generation, including a more efficient parallel to 
serial conversion, has been added as a mode called MPSSE (Multi-
Protocol Serial Synchronous Engine which also supports SPI, JTAG 
and any custom protocol). Also added are an 8051-type bus emulation 
and a fast, opto-isolated serial protocol. Each of these two interfaces 
can independently run a synchronous protocol up to 30MHz or a serial 
protocol up to 12Mbaud. There are also digital IOs that can be bit-
banged. Let’s see how this improved part can solve a wider variety of 
design problems. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.1:  Block diagram of FT2232H 
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Data Collection Pod 
Figure 4.2 shows a block diagram of a "Data Collection Pod." 

This pod is battery powered and is physically small and light to enable 
it to collect data from a wide range of sources.  Once enabled it 
collects data from three analog sensors and stores these data 
samples in an 8MB Atmel DataFlash. At the end of the data collection 
period the pods are connected to a PC to extract the data and to 
recharge the lithium battery. 

 
 

 
 
 
 
 
 
 
Figure 4.2:  Block diagram of data collection pod 

 
There are many applications that have a similar block 

diagram. In this application data is being collected but, with 
transducers rather than sensors, this block diagram could also be a 
data distribution system. My point here is that I am describing a 
general application using a specific example. 

 
The obvious method of connecting the data pod to a PC is via 

USB. This will mean choosing a microcontroller that has a USB 
interface or by adding a USB component such as the FT232R as 
shown in Figure 4.3.  Since we have a lot of data to move perhaps we 
should consider high speed USB. Both options increase the size, 
weight, and current consumption of the data pod so we look for a 
more creative solution. 
 
 
 
 
 
 
 
 
 
 

Figure 4.3:  Options for adding USB 
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Figure 4.4 shows an optimized solution that partitions the 
design into a "Reader" and a lower-cost "Data Pod". The data pod 
connects to the reader using the SPI connection on a set of PCB gold 
fingers - this saved the size, weight and cost of a connector and did 
not involve additional circuitry in the data pod. Additionally the battery 
management IC was moved out of the data pod and into the reader 
since it is only needed during charging.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.4:  Block diagram of ‘Reader’ plus ‘Pods’ 
 

The FT2232H can support two USB-to-SPI channels and run 
them both at 30MHz. There are also enough additional IO lines to 
manage two battery management ICs, support a series of buttons and 
LEDs and a 4 line by 20 character display that can give the user 
instructions or sales messages. This means that the "Reader" is a 
standalone peripheral that does not need the PC screen or keyboard 
to implement a human interface.  So, if needed, a single PC could 
support several of these readers. Lets step through this example 
which I have modularized to create a set of easy-to-adapt building 
blocks for your use. 
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Figure 4.5 shows a more detailed block diagram of the IO 
connections to the FTDI FT2232H channel A which will be set up in 
MPSSE mode. Channel B is similar but has buttons and LEDs in place 
of the LCD display. I will be going into detail on the SPI interface to the 
Atmel AT45DB642D 8MB DataFlash and on the custom parallel 
interface to the LCD display. For prototyping I used the FT2232H mini 
module, shown in Figure 4.6 which I wired to the DataFlash and to the 
display. All components are powered from USB. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.5:  Detail of FT2232H Channel A IO connections 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.6:  FT2232H mini module used for prototyping 
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SPI interface 
In MPSSE mode, command bytes are intermingled with data 

bytes within the RX FIFO and the MPSSE processor decodes these 
command bytes and operates on any data bytes - this can be a little 
confusing at first so I shall step through this SPI example in detail. 
Rather than repeat a lot of information in FTDI’s applications note 
AN_108. I recommend that you have a copy of this note to refer to as I 
work through this example.  

 
The MPSSE command structure enables data to be strobed 

out of the RX FIFO at a bit or byte level on the rising or falling edge of 
the clock. Data can also be strobed into the TX FIFO with similar 
control. Our first task then is to choose a signaling method that is 
compatible with the Atmel DataFlash. Referring to figure 21.1 of the 
AT45DB642D data sheet we note that in SPI mode 0 SI data is 
latched on the rising edge of SCK and S0 data is driven on the falling 
edge of SCK. We therefore set up MPSSE to drive byte data out on 
the falling edge of SCK (i.e command 0x11 from AN_108, Table 3.3) 
and to read data on the rising edge of SCK (i.e command 0x20 from 
Table 3.3). The Atmel DataFlash requires CS to toggle to initiate 
commands and I will use SetDataLow commands (command 0x80 
described in section 3.6 of AN_108) to drive CS low and high. 

 
Let’s first read the Device ID from the DataFlash. After driving 

CS low we need to send a command byte, 0x9F (See table 15 of 
Atmel data sheet), we then read in 2 bytes and finally drive CS high. 
This sequence is shown at the left hand side of Figure 4.7. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.7:  MPSSE commands used to drive SPI 
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A 3 byte sequence is needed to drive CS low and this is 
shown on the right hand side of Figure 4.7 - this SetLowByte 
sequence can set up to 8 bits.  3 bytes are needed to send the SPI 
command byte - bytes 2 and 3 are a count of the following data bytes, 
and, in this example, there is only one byte (0x0000 = 1 byte). This 
may appear to be a large overhead but the PC is running very fast and 
the FIFOs are large so you should not be overly concerned about this. 
Since count can be up to 64,536 the overhead is less for larger data 
transfers.  3 bytes are needed to set up the read of the response from 
the DataFlash. Finally 3 bytes are needed to drive CS high which will 
return the SPI bus to its idle state. 

 
So, we load the RX FIFO with 13 bytes and execution of these 

commands by the MPSSE engine will result in 2 bytes will be written 
into the TX FIFO. Figure 4.8 shows the resulting SPI traffic captured 
with a USB DX logic analyzer (see www.usbee.com). I added an extra 
chip select and deselect, so that we could get a little more insight into 
the sequence timing. I have the baud rate set to 1 MHz during debug 
and I will run at 30 MHz later. 

 
Refer now the Example3.cpp program listing - I have several 

helper routines that allow you to focus on the SPI operation and not on 
the details of the MPSSE implementation. Most DataFlash commands 
are 4 bytes long so I declare them as 4 byte dwords and manage the 
individual bytes inside the helper routines. I have implemented 
GetDeviceID, ReadData, and WriteData to get you started.  Note that 
the bit-bang instructions (SetLowByte used to toggle CS) cycle the IO 
pins at the selected baudrate. 
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Figure 4.8:  USBee trace of GetDeviceID SPI command 
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LCD Interface 
Most 2 and 4 line character displays use the same parallel 

interface consisting of 3 control lines (E, R/W, and RS) and an 8 bit 
data bus that can be operated in 4 bit mode.  In this application I have 
only 8 data lines available (called GPIOH0..7 when in MPSSE mode) 
so I implemented the data transfer in 4 bit mode. The waveforms 
needed to write and read the display are shown in Figure 4.9. I 
extracted these from the LCD display datasheet which is included in 
the Example 4 directory for your convenience.  I use a series of 
SetByteHigh commands to create this custom waveform. To meet the 
LCD displays timing I set the baud rate to 1 MHz when writing to this 
high data byte. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.9: Control signals used by most LCD character displays 
 
Sending a command to the LCD display takes about 1!s and 

then the display needs at least 40!s to implement the command.  
Some commands take much longer. Please refer to the LCD display 
datasheet.  The datasheet also recommends polling the status register 
looking for a busy bit but we will NOT do this due to the fundamental 
operation of USB. It is time to understand the latencies involved with 
USB transfers. 
 

Sending data to the RX FIFO involves an FT_Write command 
and reading from the TX FIFO involves an FT_Read command. If two 
commands are initiated (two FT_Writes or FT_Write + FT_read) then 
the OS will schedule these in separate USB frames. In other words, 
they will be at least 1ms apart. So it is not sensible to poll for a 40!s 
signal since it will take 1ms to do the poll!  It is also a good idea to 
send as many bytes as possible in a single buffer; otherwise the 
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separate FT_WRITEs will be 1ms apart. The FT2232H has a 4KB RX 
FIFO and can therefore queue up a large number of commands + 
data for the MPSSE engine. In this example I idle for 40!s between 
most LCD commands using the MPSSE command 0x8F, 0x38, 0x00. 

 
My simple example, within the Example4 directory, allows you 

to send any text to any line. The frame work is complete and other 
functions, as described in the LCD display datasheet, may be easily 
added.  I tested the code on several displays of different physical 
sizes, some 2 line some 4 line, and they all operated the same way. 
 

For the Data Collection Pod example I have SPI on both 
channels and I bit-bang the battery management ICs, LCD display, 
buttons and LEDs. The FT2232H makes an excellent dual USB-to-SPI 
adaptor with additional capability to read and write 24 additional IO 
lines. 
 
 
Other examples 

The MPSSE mode of the FT2232H supports SPI, I2C, JTAG 
and custom parallel protocols on both channels.  So, as an exercise, 
we could restructure the FT2232H’s channel B to drive the I2C 
protocol and run the examples from chapter 2. Or we could reprogram 
the FT2232H’s channel A to be a serial interface and run the 
examples from chapter 3. The FT2232H also supports several other 
modes and protocols that I have not presented here (look over the 
datasheet!) making it an extremely versatile component suitable for 
many interfacing projects. 
 

Figure 4.9 shows an alternate hardware implementation for a 
single channel DataPod using a solder-less breadboard.  I used a 
DLP-1232H module since this DIL module plus straight in!  A 
downside is that only part of a Channel A is brought out to the module 
pins; high byte is not brought out so I implemented the 7-pin LCD 
interface on an MSP23S08 expansion device (this is an SPI version of 
the MSP23008). 

 
I hope that I have given you a flavour of the capability of the 

FT2232H - it can be any two of: 
USB-to-SPI adaptor USB-to-I2C adaptor 
USB-to-JTAG adaptor USB-to-custom protocol adaptor 
USB-to-serial adaptor (RS232, RS422 or RS485) 
 
And if you need four channels then look at the FTDI FT4232H. 
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Figure 4.10: Single channel DataPod using a DLP-1232H module 
 

 
Chapter summary 

Notice that we write software on the PC to create our industry-
specific device.  The modes of the FT2232H allowed us to create a 
variety of solutions with a single component which is configured using 
software.  There is no firmware to write or maintain at the USB device 
since the FT2232H is implemented as a fixed-function, high-speed 
device.  The drivers hide all of the details of USB and we can focus on 
filling the RX FIFO and reading the TX FIFO – this enables us to be 
closer to our application. 
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Introduction to Part 2 
 

We learnt in part 1 of this project book that most of the 
complexity of a USB system is within the host controller. The host 
controller is responsible for managing the communications to a 
diverse range of USB devices and this must be scheduled using 
predefined rules and many timing constraints. Early USB host 
controller implementations used a fast RISC CPU that was tuned to 
process the various transaction lists and to handle the required error 
checking and retries. FTDI took a different approach with their 
Vinculum-II host controller - they implemented most of the host 
controller functions in dedicated, special-purpose hardware such that 
the host controller function could be managed by a simpler 16-bit 
CPU. There are still timing constraints but these are handled by a real-
time micro-kernel (which is described in later chapters). This 
'hardware-heavy' implementation results in a USB host controller that 
is easy to use and is the main subject of part 2 of this project book. 
 

FTDI provide more than just the silicon components; their full 
solution includes a complete C-based tool chain with a GUI-based 
Integrated Development Environment (IDE), a Real Time Operating 
System (RTOS), an on-chip debugger and evaluation modules. There 
is a lot of material to cover! Chapter 5 looks at the original Vinculum 
host controller and its applications range –Vinculum-II can do 
everything that the original Vinculum can do plus a lot more!  Chapter 
6 looks at the hardware capabilities of Vinculum-II and chapter 7 looks 
at the micro-kernel and device drivers wrapped around this hardware. 
Chapter 8 works through a design example using the Vinculum IDE 
and I round off part 2 with two chapters of worked design examples.  
You will discover that developing a product that requires USB host 
capability is a straight-forward, well-defined task – you will call it 
“easy” after the second project! 

 
My brief from FTDI in writing Part 2 was to “keep it short and 

precise” so, to save space in this book and to avoid a lot of repetition; I 
only include snippets of the example code in this book.  I expect you 
to be reading this book alongside a PC that has the examples on it.  I 
will refer to the example code by filename and you will view the source 
code on your PC screen rather than in this book.  Having a PC with 
the Vinculum-II toolset installed and a V2EvalBoard attached will also 
give you the opportunity to run the examples as I progress through 
each stage.  This will provide the best learning experience. 
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Chapter 5: Vinculum-I Design Examples 
 
 FTDI introduced their first generation dual USB host 
controller, now called Vinculum-I, in 2006.  It is a fixed-function device 
that supports the attached mode of operation as shown in Figure 5.1. 
 
 
 
 
 
 
 
 
 

 
Figure 5.1: Vinculum-I operates as an attached device 

 
 Vinculum-I runs a firmware monitor that is controlled by an 
external application CPU using an SPI, FIFO or UART link.  Several 
firmware versions are available that implement a variety of specific 
functions but all include the ability to read and write to a USB flash 
drive.  This chapter looks at several examples of attaching a flash 
drive to an existing product using Vinculum-I. 
 
Adding a Flash Drive to a product 

The flash drive is arguably the most successful USB product.  
Its density has increased almost logarithmically over the past decade 
while its price has fallen at a similar rate.  You can now buy 1GB 
drives for less than $10.  But, up until now, they have been excluded 
from embedded projects due to the complexity of interfacing but I am 
about to change all that!   
 

The major issue is, of course, that a flash drive is a USB 
device and therefore, to control it, you need a USB host controller.  
The USB specification deliberately put most of the communications 
complexity within the host controller, since there is only ever one in a 
system, and this enables USB devices to be simpler and therefore 
lower cost.  A flash drive is a Mass Storage Class device and, 
although these specifications are a free download from www.usb.org, 
they are not easy to read.  This is not surprising because they are 
specifications and not implementation guides.  Additionally, these 
Mass Storage Class specifications only define basic track/sector, 
read/write operations so we also need to understand specifications of 
the FAT file system, as used on all commercial flash drives, to be able 
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to read and write user data.  The amount of information that we need 
to understand how to “just connect a flash drive” is becoming over 
whelming.  What we need is a component that implements all of these 
specifications for us; after all, they are industry standard specifications 
that we have almost no freedom to change anyway, we just want to 
use them! 
 

Vinculum-I provides a DOS-like, command line interpreter, 
front-end to a flash drive.  A Vinculum block diagram is shown in 
Figure 5.2 – internally it is implemented as a microcontroller, with 
specialized IO devices, running embedded firmware but we do not 
need to know this.  Vinculum-I’s command line interface is accessed 
via a UART, SPI, or a FIFO.  Vinculum-I actually supports two USB 
ports and each can be programmed to be a host or a device but my 
series of examples will assume a single host port with a connected 
flash drive. 
 
 
 
 
 
 
 
 

Figure 5.2: Vinculum-I uses a DOS-like command interface 
 

To demonstrate its ease of use I am going to connect the 
FT232R USB-to-serial cable introduced in Chapter 2 to a PC that is 
running HyperTerminal at 9600 baud.  I will connect this cable to an 
FTDI evaluation module called VMusic as shown in Figure 5.3.  Ignore 
the name for now, we won’t use the “music” part until the second 
example; for now, this is a Vinculum-I mounted on a board with a 
convenient serial connector.  Choose any flash drive that you may 
have and plug this into the USB A socket of the VMusic board, also 
shown in Figure 5.3. 
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Figure 5.3: USB-to-Serial cable connected to VMusic board 
 

The board will sign on and offer a D:> prompt.  Now, in 
HyperTerminal, enter “DIR” and, Hey Presto, the contents of the drive 
are displayed.  Now enter the following commands: 

OPW test1 
IPA 
WRF 12 
Hello World! 
CLF test1 

These commands first open a file called “test1” for write, then 
tell Vinculum that 12 bytes of data are coming. “Hello World!” is the 
data that is written, and CLF closes the data file. 
 

Now remove the flash drive and connect it to your PC, Mac or 
Linux system and open test1.  Notice that the data written by the 
Vinculum is present.  Now edit test1 to add a message “Hello from my 
PC, Mac or Linux” 
 

Now reattach the flash drive to the VMusic board and enter 
“RD test1”.  Voila, the text is displayed! 
 

Now stop and think what we have accomplished. 
 

We have written, read and exchanged data files between a 
PC, Mac or Linux system and an embedded system using a flash 
drive.  We did not have to learn USB, the Mass Storage Class 
specification or even the FAT file system.  It was as easy as entering 
DOS-like commands on a serial connection. 
 

Pretty amazing! 
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Vinculum-I powers up in Extended Command mode where all 
the commands and data are ASCII; some of these commands are 
summarized in Figure 5.4.  It can be switched into Short Command 
mode where binary commands and data can be exchanged.  The 
VMusic board only provides access to the UART connection but this 
will be enough for my first set of examples.  Vinculum-I is also 
available in an OEM 24 pin DIP and this additionally provides access 
to the SPI port, the parallel port FIFO and the other USB port. 
 

 Directory Operations 
DIR Lists the current directory 
MKD  <name> Creates a new directory <name> in the current directory  
DLD <name> Deletes the directory <name> from the current directory 
CD <name> The current directory is changed to the new directory <name> 
CD .. Move up one directory level 
 File operations 
RD <name> Read file <name>. This will return the entire file  
OPR <name> Opens file <name> for reading with ‘RDF’ 
RDF  <size> Reads <size> bytes of data from the current file 
OPW <name> Opens file <name> for writing with ‘WRF’ 
WRF  <size> Writes <size> bytes of data to the end of the current open file 
CLF <name> Closes file <name> for writing 
DLF <name> This will delete the file from the current directory and free up disk space  
VPF <name> Play an MP3 file.  Sends file to SPI interface then returns 
REN <n1><n2> Rename a file or directory 
 Management Commands 
SCS Switch to the short command set 
ECS Switch to the extended command set 
IPA Input data values in ASCII 
IPH Input data values in Hex 
SUD Suspend the disk when not in use to conserve power.  
WKD Wake Disk and do not put it into suspend when not in use 
SUM Suspend Monitor and stop clocks 
FWV Get Firmware Versions 
FS Returns free space in bytes on disk 

 
Figure 5.4: Some of the monitor’s DOS-like commands 

 
There are two types of project suitable for an attached 

Vinculum device – data distribution and data collection and I have 
examples of each category.  Typically, data to be distributed is created 
on a PC using specialist tools and then copied onto a flash drive; an 
embedded system then accesses this information and presents it to a 
user or a machine.  My example is a small JPEG viewer and MP3 
player – something that we would take on a business trip and that 
plays back images and sounds of our family, or our favorite music.  If I 
had used a larger display I would have called this an “active photo 
frame” (it is on my TODO list!).  My data collection example is a 
portable data logger that collects field data for later analysis by a PC.  
In both cases an application microcontroller is used to drive the 
Vinculum-I (since it is a peripheral device) and other circuitry.  I am 
confident that you can dream up many more applications for this easy-
to-use part. 
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 JPEG viewer and MPEG player 
I chose a Cypress PSoC for the application microcontroller 

since it has firmware-configurable hardware that allows me to solve a 
wide range of problems with a single device.  I develop and debug 
using a “high-end” PSoC device that has ample analog and digital 
resources then, near project completion, I can select a lower cost 
device within the same family.  For the first example I shall use the 
Cypress PSoC Evaluation board and this is shown in Figure 5.5 with 
the VMusic board and a 1.5” x 1.5” Micro-LCD display already 
attached to the breadboard area. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.5: This example was developed and debugged 
using a PSoC development system 

 
Fundamentally I have a PSoC that reads image files off a 

flash drive using commands sent to the Vinculum monitor, the PSoC 
then sends this image to the display.  If a matching MP3 file is also 
present on the flash drive then I command Vinculum-I to play it – this 
could be music or a person talking.  A PC is used to create the image 
and MP3 files and these are copied onto the flash drive.  The 
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PSoC/Vinculum-I based player then “runs the show.”  A JPEG viewer 
and MPEG player is the base example but an interactive display that 
could be used in stores, museums, product demonstrations, art 
galleries, etc. is a straightforward design extension.  A series of flash 
drives in English, Spanish, Japanese, etc. could be used to create a 
more universal solution. 
 

Another beneficial aspect of a PSoC-based design is that 
Cypress has over a hundred applications notes that describe building 
blocks that can be used within your own design.  The PSoC could 
scan buttons and the application program would use these button 
inputs to navigate through images / MP3 files. Or the PSoC could 
support a touch screen using a few of its configurable analog and 
digital blocks.  This could be a simple resistive screen overlay or a 
more reliable CapSense implementation.   
  

The size of the graphical display determines the complexity 
and choice of the PSoC.  Since this example is about embedded flash 
drive applications I chose the simplest display to implement here and I 
will cover interfacing to a larger display in a future update.  I found a 
serial-interface, micro-LCD and was very impressed with ease of use 
of these 128x128 color displays.  These 1.5” x 1.5” displays are not 
expensive – you should get some and experiment with them.  I am 
sure that you will soon find many uses for them, just as I did.  I 
personally found the OLED displays much better to look at when 
compared with the LCD displays but the firmware to drive both 
displays is identical.  The micro-LCD module is a very capable 
subsystem that supports graphics rending and several fonts.  My 
example uses about 5% of its capability as I just download images to 
it. These images are 128x128 by 16-bit color and I use a PC 
application called Graphics_Composer that converts JPEG, BMP, and 
GIF images into this format (this is included in the download package).  
In this example these images will be copied to a flash drive and called 
nnn.img (nnn = 000 to 999).  MP3 files are also created for each 
image and they will be called nnn.MP3 (these could be your favorite 
songs renamed).  
 

From an application software perspective we have a PSoC 
interfacing two serial connections, a Vinculum-I and a micro-LCD 
connection.  The application starts by looking for 001.img and copies it 
to the display.  If it finds 001.MP3 then it will play it, else it will wait for 
60 seconds (easy to modify) before moving onto 002.img.  The 
application keeps incrementing through filenames until one is not 
found then it starts at 001.img again. To change the photos and/or 
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music you just swap the flash drive.   The complete PSoC project is 
one of the Vinculum-1 examples downloadable from my website and, 
as you will see, it supports the basic function.  It is easy to expand this 
design to add functions – I plan to add a feature-rich alarm clock once 
I get some spare time.  It would be easy to make this battery powered 
however displays tend to consume a lot of power so I would also add 
a battery charger in this case.  A battery charger uses a few analog 
and digital resources of a PSoC, a few FETs, an inductor and R’s and 
C’s.  This design extension is covered in detail in Cypress’s 
application note collection. 
 
 
 
Portable data logger 

I was “persuaded” to create an example based on the PIC 
microcontroller. I personally didn’t like this part due to its “weird” 
instruction set.  However, my colleague Don Powrie of DLP Design 
introduced me to the CCS toolset and these make PIC designs 
actually pleasant to do!  I used to be a staunch advocate of only using 
assembler code for microcontrollers – I argued that a compiler would 
always generate larger object code than my tuned assembler code.  
But now these microcontrollers are available with 16KB, 32KB and 
beyond of flash memory!  So what is the point of saving a few hundred 
bytes when you still have over half of the flash space as unused?  C 
code is also much easier to write and debug when compared with 
assembler code. 
 

The CCS compiler was specifically designed to create 
optimized code for the PIC family of microcontrollers.  As well as all of 
the standard features that you would expect from a quality C compiler 
it includes built-in functions to support the on-chip features of a PIC 
microcontroller.  A good example is the #use RS232 directive; here 
you specify that you need to use a serial port and you give the 
compiler details such as baud rate and the IO pins that will be used for 
TX and RX.  If the chosen PIC device has a hardware UART then the 
compiler will use this for printf and scanf functions, else it will include 
subroutines to manage the low-level bit manipulations for you.  Your 
main program uses printf statements as before.  The CCS compiler 
also contains built-in functions to drive the on-chip ADC and the real 
time clock.  This way you can focus upon WHAT your program is 
doing and not the lower level HOW. 
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Don designed the battery powered data logger shown in 
Figure 5.6 to demonstrate the capabilities of Vinculum-I.  The example 
program uses a serial connection to control Vinculum-I, which writes 
data to the flash drive.  Better still, the hardware connection is a 
standard 4-wire serial port using TX, RX, RTS and CTS. 
 

The PIC runs an application program that has access to a 
flash drive using Vinculum-I, a real time clock, a temperature and 
humidity sensor and two analog input channels.  A connector for the 
ubiquitous TTL-232R cable is included, as it a connector for a PIC 
debugger such as CCS’s ICD-U40 unit. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 5.6: The DLP-VLOG showcases Vinculum-I’s capabilities 
 

The application program first checks to see if a flash drive is 
present – if one is not found then the PIC goes back to sleep since 
there is no point collecting data if there is no where to store it.  Once a 
flash drive is found the PIC starts a data collection cycle: it first reads 
the real time from the Dallas/Maxim DS1302, then the two analog 
signals and the battery voltage, then the temperature and humidity. 
This data is then written to the flash drive and the system goes back to 
sleep to save battery power.  This cycle repeats while a flash drive is 
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present and the battery is charged.  The flash drive may be removed 
at any time and the collected data may then be analyzed using your 
PC. 
 

The source code for the application is available with the 
Development Kit so that you can customize the data collected and the 
time interval between samples.  Don designed the board as an 
evaluation tool for Vinculum-I designs but I can see many applications 
where this battery-operated, portable data logger would be a great fit 
as is. 
 
 
Embedded flash drive designs now enabled 

I hope that I have shown you that projects built around a flash 
drive are now easy.  Vinculum-I encapsulates all of the required 
industry standard specifications and presents a simple DOS-like 
command line interface that is accessed via a serial port (or SPI or 
parallel FIFO).  You add your favorite microcontroller with an 
application program to control the Vinculum-I peripheral.  I presented 
a few projects to fuel your imagination.  My examples used a Cypress 
PSoC and a MicroChip PIC but the code is readily ported to a different 
microcontroller architecture.  Your project can collect data that is later 
analyzed on a desktop system or it can be used to redistribute data 
that was created on a desktop system via lower cost platforms.  
Project data may be updated by simply swapping flash drives.   
 

If you can read and write to a serial port then, with Vinculum-I, 
you can read and write data files on flash drives.  I would be interested 
to hear about projects in which you have creatively used a Vinculum 
and a flash drive. 
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Chapter 6: Getting to know Vinculum-II 
    

Vinculum-II is FTDI's second generation dual USB host 
controller and it is a superset of the original Vinculum described in 
chapter 5 - in fact, the 48 pin LQFP version is backwards compatible 
(although it needs different firmware). Intense customer feedback on 
the Vinculum requested more package options, higher performance 
with lower power and more capability. Vinculum-II delivers on all of 
these aspects with the added ability to be user programmable - this 
allows Vinculum-II to support an additional standalone usage model 
as shown in Figure 6.1.  Here the Vinculum-II CPU is also the 
application CPU and an adjunct microcontroller is not required which 
will reduce system costs. 
  
 
 
 
 
 
 
 
 

Figure 6.1: Vinculum-II supports standalone operation 
  

Vinculum-II was designed from the ground up to be an 
efficient C machine and the much larger transistor budget was spent 
adding hardware assist to all of the peripheral components. Figure 6.2 
shows a block diagram of the Vinculum-II, all of function blocks are 
enhanced over the original Vinculum-I device and there are several 
new blocks. 
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Figure 6.2: Vinculum-II hardware block diagram 

  
   The heart of Vinculum-II is a modern 16-bit Harvard Architecture 
CPU that controls three major buses – a 32-bit data memory 
accessing 16 KB of RAM, a 16-bit program memory accessing 256KB 
of Flash and an 8-bit peripheral bus. All buses are pipelined and 



© 2010, John Hyde, USB Design By Example                 Revision 2.01 Page 61 

support concurrent operation. The CPU has no registers (or it has 8 K 
registers depending upon your point of view) and the instruction set 
has been designed around single clock memory accesses. The 
instruction set was designed to efficiently implement C code and the 
user is not expected to use an assembler (although one is available). 
In fact, all of the examples in part 2 are written in C and I haven't even 
opened my assembler guide! 
 

The debugger block can take control of the CPU if necessary 
using the breakpoint unit. There are three hardware breakpoint 
registers that can trap program or data accesses in real time. The 
debugger port is a single pin, bi-directional 1Mbaud serial connection 
and it can take control of the CPU and all internal buses; it can also 
manage two special peripherals, the breakpoint unit and the flash 
programmer, enabling a blank Vinculum-II to be easily brought to life 
with minimal external hardware.  Figure 6.3 shows the debugger 
module that connects to a Vinculum-II target system: the Vinculum-II 
DIP modules have matching pins and an FTDI Applications Note 
describes how to integrate this capability into your custom design.  
This module connects to the development PC using a standard USB 
cable and this will be demonstrated in Chapters 9 and 10.  Note that 
the Vinculum-II Evaluation Board has the debugger module circuitry 
built in. 

 
 
 
 
 
 
 
 

Figure 6.3: A debug module connects to your target system 
 

A major Vinculum-II design goal was efficient power 
management and, following a reset, only the CPU, clocks, debug port 
and flash memory are powered. The CPU starts at 48 MHz and can 
be switched down to 12 MHz or it can move into standby mode where 
it only consumes about 150 uA. The 12MHz active current is 8 mA 
increasing to 25 mA at 48 MHz. 
 

All the peripherals shown in Figure 6.2 have individual power 
connections that are not activated unless required by your application 
program. Each peripheral has one or two control/status registers and 
these are considered as part of the CPU core - this enables the CPU 
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to power down a peripheral that is infrequently used while maintaining 
its state for quick re-activation. Data buffering and movement is 
handled by a sophisticated DMA controller. 
 

The six - channel DMA controller can move data between 
memory and peripheral devices or it can implement queues, FIFO or 
circular, in memory. The CPU is rarely involved in data movement - it 
sets up DMA channels and responds when data transfers have 
completed. Four channels are available for application use and two 
are dedicated to each USB host/slave controller. 
 

The USB host controller is modeled upon the OHCI (Open 
Host Controller Interface) Specification (a free download from 
http://www.compaq.com/productinfo/development/openhci.html) with 
most of the queue handling, error checking and retries implemented in 
specialized hardware. This results in minimal interaction required by 
the CPU to support full and low speed data transfers on both host 
channels simultaneously. Each host controller can also run in slave 
mode to present a USB device interface to an external host (we shall 
see examples of both in later chapters). 
 

The Vinculum-II can be used in attached mode (see Figure 
5.1) where an external CPU uses the UART, SPI or FIFO peripherals 
to communicate with a firmware monitor program running on 
Vinculum-II. FTDI plan to port all of the original Vinculum-I firmware 
packages (VDAP, VDIF, VCDC, VMSC, and VDPS) into Vinculum-II 
versions and the Vinculum-II monitor will be the subject of a future 
FTDI Applications Note. 
 

Additional peripherals and modes have been added to 
Vinculum-II to support operation in standalone mode (see Figure 6.1). 
A high-speed synchronous mode has been added to the FIFO 
function; the original SPI slave modes are supported and a standard, 
'unmanaged' slave mode has been added; two slave SPI channels are 
now available and a master SPI channel has been added; the UART 
is unchanged. 
 

Vinculum-II also includes: five general purpose 8-bit IO ports 
where a transition on some bits can generate an interrupt; 4 general 
purpose 16-bit timers, each with an optional 16-bit prescalar, that 
operate in a variety of modes including one shot, continuous and 
interrupt generation; a 32-bit WatchDog timer that will reset the CPU if 
not periodically cleared and 8 PWM channels that supports a variety 
of modes.  
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Vinculum-II is available in 6 packages types (32/48/64 pin, 
LQFP/QFN) so, after selecting which peripherals you need for your 
application, you would choose the smallest (and therefore cheapest) 
package option for your design. To allow this package flexibility 
Vinculum-II includes an IO Mux that is used to map peripheral 
resources onto physical device pins. Full cross-bar switching (i.e. any 
peripheral pin connectable to any physical pin) consumes a great deal 
of die area so, in order to keep costs down, the peripheral pins are 
grouped into sets of four related functions and these functions are 
connectable to the physical pins in groups of four. Figure 6.4 shows 
two examples of connecting peripherals to physical pins.  The 
Vinculum-II toolchain includes an IO_Mux utility program that 
simplifies I/O pin assignment. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.4: The IO Mux connects peripherals to physical pins 
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A schematic of each physical pin connection is shown in 

Figure 6.5 and is designed to accommodate a variety of load 
situations. The output stage operates at 3.3V levels (and is 5.0V 
tolerant) and may be configured to have a slow or fast (default) slew 
rate and a drive strength of 4mA (default), 8mA, 12mA or 16mA. An 
input may be configured as a normal input (default) or a Schmitt 
trigger input and have no termination (default) or to use a pull up or 
pull down 75 K" resistor.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 6.5: Each IO pin has a configurable driver/receiver 
  
 Vinculum-II has a fast CPU, ample on-chip program and data 
memory and a diverse collection of peripherals.  For many 
applications these ample on-chip resources will enable a single-chip 
Vinculum-II solution.  In all cases the peripherals are implemented 
with a lot of specialized hardware which allows the software to easily 
control these devices.  FTDI also provide device drivers for each of 
the peripherals and this is the subject of the next chapter; your 
applications code will not access peripheral registers etc. but will use 
a common API on top of a micro-kernel.  The micro-kernel manages 
all of the peripherals with tasks that are higher priority than user tasks.  
In this way, you need not be concerned that your selection of 
peripherals could change the system timing of, say, the host controller 
– you can focus upon your applications code. 
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Chapter 7: Writing software for the Vinculum-II 
 

Writing software for a USB host controller may seem like a 
daunting task but I should point out that we have already done this! 
With example 1, in chapter 2, we wrote a program that interacted with 
the USB host controller on a PC (Windows, OS X or Linux). The 
physical hardware was masked by the operating system which 
presented us an API (Application Program Interface). We will follow 
the same methodology when writing software for our embedded host - 
FTDI provide an API for Vinculum-II which masks the intricate details 
of the embedded host controllers, and other hardware resources, so 
that we can focus on our application program. Figure 7.1 shows the 
basic structure of the different host environments - note the 
similarities. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.1: Applications programming environments 
  

The lowest levels of drivers within the Windows, OS X, and 
Linux environments have a micro-kernel or scheduler that must deal 
with the real time nature of USB host controller communications but 
this level of detail is not exposed at the API level. Since FTDI expects 
many Vinculum-II applications to operate with real-time constraints 
they decided to expose a micro-kernel API to the user. They also 
provide device drivers for all of the on-chip peripherals. The 
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combination of micro-kernel plus device drivers is called the Vinculum-
II Real Time Operating System, VII-RTOS, or just VOS. 

 
If you haven't written programs using a multitasking RTOS 

framework before you will discover that it is a good methodology to 
build applications that do more than one thing, and I can’t think of a 
previous embedded project that I have done that would not have 
benefited from this approach. If you are familiar with terms such as 
Task, Thread, and Semaphore you can skip the next section. 
 
 
Multitasking RTOS 101 

You have to learn some new words and concepts to be 
successful with a multitasking RTOS. This will take some effort so let 
me first explain the benefit of becoming familiar with these new terms. 
 

You probably write your code using flow charts or state 
machines. Flow charts are good for describing sequential processes 
while state machines are good if there are small numbers of possible 
states with well-defined transition rules. However, both are poor at 
describing more complex systems with several interdependent parts. 
Multitasking, on the other hand, is a good fit for such systems - you 
define a task to handle each part then define how the parts interact. 
 

A significant weakness of the sequential and state machine 
approaches is that they are inflexible. A good programmer can initially 
create a workable solution using these approaches but as 
requirements change and enhancements are demanded the workable 
design invariably turns into spaghetti code that is difficult to debug and 
even worse to maintain.  The multitasking RTOS approach forces 
code that is structured so that it can grow and change easily. Changes 
are implemented by adding, deleting or changing some tasks while 
leaving other tasks unchanged. Since your code is compartmentalized 
into tasks, propagation of changes through the code is minimized. 
This will also reduce testing efforts. So, you have some hard work now 
to save time and effort later - this is a good deal. 
 

The first paradigm shift you need to make is to partition your 
program into a set of smaller tasks - each will do one job and it will do 
it very well.  You must also be comfortable with data structures since 
an RTOS will use a lot of them. Note too that task now has a specific 
meaning, it consists of a collection of code bytes that is the program, a 
collection of variables that are data bytes on the stack and a data 
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structure, also on the stack, called the task context. A thread is a 
data structure used to describe a task and its operational status. 

 
If you have two, or more, identical peripherals (Vinculum-II 

has several duplicate units) you can define two threads each with the 
same code object but with different stack and context objects. 

 
Once your application is divided into several tasks you will 

define how these tasks interact. The primary inter-task 
communications mechanism is a semaphore, which is another 
system-defined data structure. Several operations are defined for a 
semaphore (object) such as Initialize, Signal, and Wait. A task that 
creates data will signal when it has data while a task that consumes 
data will wait until a semaphore is set.  Figure 7.2 shows a simple 
embedded program split into multiple tasks, three in this case. 
 
 
 
 
 
 
 
 
 

Figure 7.2: A program has several tasks that interact 
 
We will work through an example in the next chapter using 

real Vinculum-II code rather than the theoretical pseudo-code shown 
in Figure 7.2 so don’t focus upon the details yet.  All will become clear 
with some examples. 

 
Each task is written as if it has sole ownership of the CPU and 

you must now consider that GetData() runs continuously – mmm, what 
did happen to input data while you were processing and outputting 
data before?  You could now allocate the coding of each task to 
different programmers with different areas of expertise.  Also if a 
better data processing algorithm is discovered then only one task has 
to be changed; you need not be concerned about the impacts to the 
input and output processes since they now operate independent of the 
processing task.  Are you beginning to see some of the benefits of this 
“divide-and-conquer” approach? 
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When you divide your program into multiple tasks you will 
decide that some are more important than others and you can assign 
these a higher priority. Figure 7.3 shows the classical multitasking 
RTOS task state diagram – specific details on the Vinculum-II 
implementation are covered later. As tasks are Created they are 
placed on the ReadyToRun list where the RTOS determines the 
highest priority task and makes this the Running task; execution of 
this task continues until it is blocked for some reason (waiting for a 
resource, such as a semaphore or a timer) when it is placed on the 
Waiting list; the RTOS then places the highest priority task on the 
ReadyToRun list as the Running Task; and so the process continues. 
There is a system-defined task, the IdleTask, which has the lowest 
priority and is always ready to run. 

   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.3: Tasks continuously move though this state diagram 
 
 
 
Vinculum-II Software Architecture 
 Figure 7.4 shows a block diagram of the layered Vinculum-II 
software architecture.  This is such an important diagram that I 
decided to give it a whole page (and I apologize that it is sideways!). 
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 Following a RESET the 
software environment for Vinculum-
II must be set up; the steps taken 
during this initialization are part of 
the kernel services module of 
Figure 7.4 and are shown in Figure 
7.5.  All Vinculum-II programs 
implement these steps but with 
different data and, once initialized, 
the run-time diagram shown in 
Figure 7.3 describes the operation 
of your program.  
 
Kernel Services 
 Looking   deeper  into   the        Figure 7.5: Software 
kernel services initialization steps:       Initialization Steps 
 
StartVOS: this function call initializes 
all of the internal data structures and sets up the operational 
parameters of the kernel.  The Vinculum-II Operating System, or VOS, 
needs to know how many device drivers will be used so that it can 
organize and set aside memory for data buffers.  System timing 
parameters are also set using StartVOS. 
 
ConfigureIOMux: Vinculum-II is available in three package sizes (32, 
48 and 64-pin) and this function call sets up the mapping of peripheral 
Input and Output functions with the physical pins on the package.  The 
number of available IO pins varies with package size (12, 28 and 44) 
and you cannot get every peripheral signal connected to the outside 
world on the smallest package.  Note too that you should be careful 
not to map away the debugger pin – this is pretty essential for 
program development and debugging! 
 
InitializeDrivers: at the bottom of Figure 7.4 is the Vinculum-II 
hardware that was presented in Chapter 6.  Each of the peripherals 
has a set of control and status registers (some more than others) but 
their intricate hardware details are not exposed since the micro-kernel 
must own the hardware.  Instead, FTDI provides an optimized 
Hardware Interface Driver for each element as shown in the lower 
level of  Figure 7.4.  Each driver is tuned for the particular peripheral 
and handles the device interrupts.  A uniform API is presented to the 
user (described later in this Chapter) to standardize and simplify the 
application program.  Before a driver can be used it must be initialized.  
The driver for most peripherals is small but the USB Host Controller 
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driver, for example, will set up several threads to manage the root 
hub, optional downstream hubs and transaction list processing. 
 
CreateResources: a Vinculum-II program will consist of multiple 
independent tasks that interact with each other.  During initialization 
the threads for each of these tasks will be created along with the 
semaphores, mutexes and, perhaps, shared buffers needed for inter-
task communications.  Each thread has a context (object) and handles 
for shared objects, such as semaphores, may be provided as data 
within this context.  Each thread has its own stack that is initialized 
with a known pattern so that VOS can track memory usage. 
 
StartScheduler: once all of the program objects have been initialized 
we start the real time operating system which schedules tasks 
according to the run-time task state diagram as shown in Figure 7.3.  
The VOS scheduler uses a round-robin, priority-based, pre-emptive 
algorithm to run the highest priority task.  It also tracks statistics such 
as thread CPU usage and this enables your application to be profiled 
and tuned if necessary. 
 
Additional Device Drivers 

Returning again to Figure 7.4, notice that layered above the 
hardware interface drivers are a set of USB Class and Other drivers.  
FTDI provides (at the time of writing, October 2010) Bulk Only Mass 
Storage Class (BOMS/MSC), HUB, HID, Communications Device 
Class (CDC) and Still Image drivers on top of the host controller and 
also HID and FT232 drivers on top of the USB device controller.  This 
means that, out of the box, the Vinculum-II can control flash drives, 
cell phones, cameras, mice, keyboards, joysticks, etc etc and can also 
operate as a HID or as an FT232 device.  More drivers will be added 
in future VOS releases. 

 
For advanced users, you can write your own device driver 

layered on top of the hardware interface driver.  FTDI provides an SD 
Card example layered on top of the SPI-Master driver – this enables 
immediate support of SD Cards or even the Atmel DataFlash 
component since this uses the same SPI interface (and is included in 
the examples in Chapters 9 and 10).  

 
File System Driver 

Layered on top of the MSC driver and the SD Card driver is a 
FAT file system driver.  It supports devices with FAT12, FAT16 or 
FAT32 structures and include everything you need to simply open, 
read or write and then close data files.  It handles all of the file 
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allocation tables and directory updates.  It only supports 8.3 filenames 
but I don’t see this as an issue for an embedded system.  The flash 
drives, or SD Cards, that Vinculum-II uses are interchangeable with 
Windows, OS X and Linux systems, as you would expect.  I did 
discover that writing in blocks that are a multiple of the base sector 
size does give you better performance.  The API supports random 
length file reads and writes but this does cause the driver to run read-
modify-write cycles on the physical device.  I would recommend doing 
your own sector buffering as the examples in later chapters. 

 
Device Manager 

The next level of Vinculum-II software, shown in Figure 7.4, is 
the Device Manager that provides a consistent and standard interface 
to the underlying on-chip peripheral device drivers and any added 
device drivers.  The API includes Open, Close, Read, Write and IOCtl 
(IO Control) functions.  All devices are accessed using these standard 
API functions so communicating over the UART is the same as 
communicating over SPI, or the USB Host for that matter!  This will 
standardize and simplify your application code and make it easier to 
change your hardware to match what your marketing team has (over) 
sold.  Any differences between peripherals, such as setting the baud 
rate of the UART, are handled by the IOCtl API function.   The read 
and write functions are used to stream data to and from devices and 
four DMA channels are available for user applications.  Each host 
controller also has a DMA channel which the driver uses to move data 
into and out of any specified user data buffers.  These read and write 
requests can be any length since the file system driver handles all 
USB packet size issues. 

 
Above the kernel level is another FTDI supplied block; these 

are standard C run-time support such as string handling, ctype 
handling, stdlib support and stdio support (fopen, fclose, fread, fwrite 
that use the FAT file system API described above).  The only non-
FTDI supplied block is the user application which you write using one 
or more threads and how to do this is the subject of the next Chapter.  
FTDI supplies an application program template and several examples 
to get you up and productive with your Vinculum-II as quickly as 
possible.  I have built on these FTDI examples with two chapters of 
examples following a Vinculum-II tool chain tutorial which is covered in 
the next chapter. 
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Chapter 8: Developing Vinculum-II Application Programs 
 

 This chapter will focus upon using the Vinculum-II 
development tools to create application programs. I will create a 
comprehensive application in stages and will explain the process as 
we proceed. I will admit that the example in this chapter is somewhat 
contrived – I did this to illustrate key aspects of writing programs 
based upon a real-time kernel. I would recommend that you work 
through each stage of this example and I have provided the source 
code at each stage for you to study. 
 
 FTDI offers a range of development hardware and I always 
find it better to start with the most powerful system such that we are 
not constrained. This chapter uses a Revision 1.0 Vinculum-II 
Evaluation Board with a 64 pin module attached; operation of the 
Revision 2.0 board is the same but some of the connectors have been 
renamed (sorry!).  Rather that repeat a lot of information in this book, I 
assume that you have a copy of the datasheet for this board (which is 
50+ pages) alongside since I will be making frequent references to 
figures and text from it.  I will use V2Eval: as a prefix when I am 
referring to this datasheet. Most of this chapter’s examples run on the 
board as is – there is a bonus section later in this chapter where we 
will add some hardware. The board has a lot of features and I will 
explain each as we use them. 
 
 FTDI provides an integrated Development Environment (IDE) 
for the Vinculum-II. This is a Windows-based product that should also 
run on a Mac which has the Parallel’s Desktop installed (testing this is 
on my TO DO list!). The Vinculum-II IDE has a graphical interface that 
provides context-based menus for a variety of dockable windows. If 
you are familiar with the Windows Visual Studio environment or the 
Mac Xcode development environment then the Vinculum-II IDE will be 
easy to learn.  New users should download and read FTDI’s AN_142 
Vinculum-II Toolchain Getting Started Guide. 
 
 All Vinculum-II application programs follow the same structure 
as shown in Figure 8.1. Our main program is at the end, it calls 
initialization routines which are at the beginning and there are run-time 
threads are in the center. The first stage of our first example is 
contained within just two modules but later stages will use many more 
and they will follow the same structure.  This consistency will help us 
develop and debug larger Vinculum-II examples later on. I will build up 
this Chapter 8 application program in stages to demonstrate both the 
process and the tools. 



© 2010, John Hyde, USB Design By Example                 Revision 2.01 Page 74 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8.1: All VOS application programs have the same structure 
 
 In the first stage of this example we are going to blink an LED 
Sounds easy but there are several new concepts to learn when using 
the Vinculum-II. Before diving into the example code, I should make a 
general comment about Vinculum-II RTOS programming. There is a 
lot of initialization to do! One downside about having a fully 
programmable set of peripherals, and a flexible real-time operating 
system, is that you have to initialize it. VOS provides a consistent view 
of the on-chip peripherals using a driver interface and this includes IO-
Control commands that are used to set the many programmable 
features of each peripheral. All IO-Control commands use the 
following format: 

Iocb.ioctl_code = VOS_IOCTL_TYPE; 
Iocb.value = ValueSpecificToType; 
Status = vos_dev_ioctl (devicehandle, &Iocb); 
 

 A returned status value of 0 means NO_ERROR and this is 
what we would typically expect. It is tedious and takes a lot of code to 
check status after every system call but it is dangerous not to check 
status at all. So the approach I take is to start with a status value of 0 
then OR in the return value then, after several commands, I check 
status. I am expecting 0 but if I don’t get this then I have to back track 
and resolve the error. I use a debugger breakpoint to trap bad status. 
 
Stage 1: Blinking an LED 
 Open the Chapter8/Stage1 project and note that it has two 
modules: main.c and main.h.  First review the header file and note 
that it contains global declarations. We should now review main.c 
and since execution will start at void main(void), then that is 
where I shall start my code tour.  
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 There are no global variables to initialize in this first stage so 
this section is empty. 
 
 Next follow two standard functions used to initialize the 
Vinculum-II real time operating system (VOS). VOS will create data 
areas for each device driver that we use.  This first stage only uses 
one driver, it will be a GPIO driver called LEDs and defined in 
main.h, and we will initialize this in InitDevices. 

 
InitDevices first checks if I am using a 64-pin device and 

continues if I am. The first programmable peripheral I set up is the 
IOMUX.  Now why did I choose: 

vos_iomux_define_output(12, IOMUX_OUT_GPIO_E_1); 
 
Remember from Chapter 6 that the Vinculum-II has five 8-bit 

IOPorts.  We only need 1 bit and this must be connected to a physical 
pin to drive the LED. Refering to V2Eval:Section 10 we see that the 
V2EvalBoard has four user LEDs. I chose LED3 since it is on pin 12 
for all package types (this will make our life easier later in the 
chapter!). Check the schematic and note that pin 12 is GPIO1 - 
Vinculum-II groups IO pins in sets of 4 so we must connect this pin to 
an IOPort using bit1 or bit5.  I chose to use IOPortE.bit1. 

 
I then initialize the GPIO device driver and, after checking 

status, I return to main. 
 
The next step is to initialize the program threads – there is 

only one in this stage. Note that the thread does not start running yet. 
We are still initializing the environment. 

 
Finally we call vos_start_scheduler and if all of the 

initialization is correct, VOS starts running, else this routine returns 
indicating that we have an error that we must resolve. 

 
Our Blink thread has further initialization to do! Blink calls 

StartupDevices which opens and configures the GPIO device 
driver.  NOTE that device drivers must be opened AFTER the 
scheduler is running. 

 
Our Blink program thread, repeated in Figure 8.2, is simple. It 

contains an initialization section then a loop that is run forever. After 
waiting for a VOS-controlled delay the state of the LED is toggled. 
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void Blink(void) { 
    BYTE PortData = LED3; 
    StartupDevices(); 
    while (1) { 
        vos_delay_msecs(512); 
        PortData ^= LED3; 
// Now write pattern to the GPIO port. 
        vos_dev_write(hDevice[LEDs] ,&PortData, 1, NULL); 
        } 
    } 

 
Figure 8.2: The Blink thread is a ‘do forever’ loop 

 
Using the IDE, now build and download the Chapter8/Stage1 

project onto your V2EvalBoard. Refer to AN_142 if you need more 
information on this process. You should now see LED3 blinking at 
about 1 Hz. 

 
If you click the IDE ‘Pause’ button you will be presented with a 

disassembly listing of the program – this is not a place that I want you 
to dwell. I have written many Vinculum-II programs, they have all been 
in C and I haven’t even learnt all of the assembler mnemonics! So 
quickly close this window. If you want to stop execution, choose a line 
in your C program and click the left margin to set a breakpoint (a red 
diamond will appear). For now, choose a line within the main loop of 
the Blink thread and click ‘start’.  The debugger will stop program 
execution once this line is reached. You can now single step, look at 
program variables etc as described in AN_142. 

 
A debug technique I prefer is ‘display progress messages’ and 

this is probably due to my early Fortran days where included printf 
statements were the ONLY debug method available….It is easy to 
include a ‘debug console’ into a Vinculum-II application and this is 
described in the stage 2 of this example. 

 
Included within the FTDI development toolset is a terminal 

emulator program called V2EvalTerm. Spin this up now, choose a 
3000000 baud rate, no flow control and click ‘connect’.  
 
 
Stage 2: Adding a debug console 
 The V2Eval Board contains an FT4232H and channel A of this 
component can be connected to the Vinculum-II as shown in V2Eval: 
Figure 3.2. No additional cables are required since all communications 
take place on the same USB connection that the IDE and debugger 
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are using. For our program to use this capability we must include a 
UART device driver and this is the main addition in stage 2. 
 
 Open the Chapter8/Stage2 project and note that there are 
now four modules. The initialization of the UART is extensive so I 
moved the InitDevices and SetupDevices procedures to their 
own module – you should study this now in initialize.c. I had to 
add UART IO pin routing and UART driver initialization to 
InitDevices and UART configuration to StartupDevices. Note 
that the structure of the UART code is the same as the GPIO code.  
 
 You write to the UART using the same vos_dev_write 
function that is used to write the LED. Unfortunately, I found this 
cumbersome for displaying text strings and variables so I wrote a 
dprintf function which is shown in display.c. I modeled this function 
after the C printf function but I limited my implementation to only 
supporting one variable per string. This solves most of my display 
needs. 
 
 I should mention that a real printf function is available in one 
of the FTDI-supplied libraries. I chose not to use this in Stage2 since it 
masks some of the points I need to make concerning RTOS program 
construction.  
 
 Use of the dprint function is shown in the Blink thread which is 
repeated in Figure 8.3 
 
void Blink(void) { 
    BYTE PortData = LED3; 
    StartupDevices(); 
    dprint("Blink has started\n", 0); 
    while (1) { 
        vos_delay_msecs(512); 
        PortData ^= LED3; 
// Now write pattern to the GPIO port. 
        vos_dev_write(hDevice[LEDs] ,&PortData, 1, NULL); 
        dprint("LED %s", PortData & LED3 ? "Off":"On"); 
        } 
    } 
 

Figure 8.3: Adding progress messages to the Blink thread 
 
 Now build and download the Chapter8/Stage2 project onto the 
V2EvalBoard.  Watch LED3 blink as before, and you will now see the 
new progress messages in the V2EvalTerm window. 
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Stage 3: Hello World 
 In Stage 3 we add another task, called HelloWorld, which also 
wants to use the dprint capability that we added in Stage 2. 
 

When you create a thread you must assign a priority to it. A 
value of 1 is the lowest and the maximum value for a user task is 32; 
VOS uses higher priorities for its internal operation. Should VOS find 
more than one task on the ReadyToRun list (Figure 7.3) then it 
chooses the higher priority task to run. If two, or more, tasks have the 
same priority then it will select each in a round-robin fashion. In 
general you should set output threads with a higher priority than the 
input rates. 
 
 Open the Chapter8/Stage3 project and view main.c. The 
Blink thread calls StartupDevices as before to initialize the UART 
device driver, but what happens if the HelloWorld thread runs first, 
before the UART driver has been initialized? The HelloWorld thread 
has a dependency on the Blink thread and their operation must be 
synchronized. VOS has a variety of synchronization primitives and the 
simplest one for this situation is a semaphore.  
 

A semaphore is a flag mechanism that two or more threads 
can use for signaling.  A thread can wait on a semaphore and a thread 
can signal a semaphore.  A semaphore must also be initialized before 
it is used; I do this in main where the DevicesStarted semaphore 
is cleared. 
 
 When the HelloWorld thread starts up it will discover that the 
DevicesStarted semaphore is cleared and will therefore wait until it 
is set. I set this semaphore at the end of StartupDevices in 
initialize.c. This will allow the HelloWorld thread to continue.   
The next thing that the HelloWorld thread does is signal the 
semaphore again. Although not required in this example it is important 
if other threads are also waiting on this semaphore. The semaphore 
mechanism allows threads to signal each other and can be used to 
control initialization sequences such as this example has shown. 
 
 Now build and download the Chapter8/Stage3 project and 
watch LED3 blink as before and see progress messages from the two 
threads in the V2EvalTerm window.  If you look carefully at the 
progress messages you will see that occasionally the messages from 
the two threads are intermingled.  This is typically NOT what you want 
and the mechanism to stop this intermingling is the subject of stage 4. 
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 Looking at the implementation of dprint in display.c you 
will see a Localbuffer declared in global memory.  This is a 
common practice in non-RTOS software but can only be used with 
caution in an RTOS environment where more than one thread can 
access this shared data. It is not obvious that we have two threads 
with this ability (which is why I am using this example) but note that 
the dprint procedure can be called from both threads. You may be 
thinking, but I only have one CPU, it is not possible for both threads to 
run at the same time. WRONG. Welcome to the world of pre-emptive, 
priority-based, multi-tasking operating systems; they can do you a lot 
of good, but, as with all power tools, if you are not careful then you 
can cut your hand off! 
 
 An interrupt can occur at any time and the beauty of an RTOS 
is that this is a managed event and is one of the key benefits of using 
an RTOS.  An interrupt can cause the currently running thread to be 
suspended and another thread started. In this Stage 3 example 
imagine that the HelloWorld thread was running and is half-way 
through a dprint operation when a timer interrupt occurs causing blink 
to run. Blink also calls dprint so we now have two threads both 
executing dprint, at the same time! 
 
 Yes, this is a contrived example but I designed it to illustrate 
the fact that you should treat all threads as if they are running 
concurrently – since they are! 
 
 And of course, this is how an RTOS is DESIGNED to operate.  
VOS has mechanisms to protect shared variables and this is 
illustrated in Stage 4. 
 
 
Stage 4: the Mutex 
 Stage 4 introduces the mutex which is an RTOS mechanism 
used to provide MUTual EXclusion and thus stop multiple threads 
from accessing the same resource. 
 
 Open the Chapter8/Stage4 project and view display.c. 
Notice how the body of the dprint routine is now protected by a mutex. 
The function vos_lock_mutex checks if a mutex is locked and, if it is 
locked, it waits for it to unlock before locking it again. If the mutex is 
not locked then the function locks the mutex and returns. There is a 
vos_unlock_mutux near the end of the dprint routine. A mutex must 
be initialized before it is used and this is usually done in main. 
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 So what happens differently now that we have a mutex? 
Recall that the HelloWorld thread was executing the dprint procedure 
when it was pre-empted by a timer interrupt; the Blink thread starts to 
run and it calls dprint. The Blink thread try’s to set the mutex but 
discovers that it has already been set (by the HelloWorld thread when 
it started executing the dprint routine). The Blink thread is blocked by 
the locked mutex so VOS starts HelloWorld running again. HelloWorld 
finishes its dprint operation and unlocks the mutex. VOS will now 
restart the Blink thread which sets the mutex again and continues with 
its execution of the dprint routine. 
 
 Now build, download, and run the Chapter8/Stage4 project 
and note that the progress messages from the two threads are now 
not intermingled. 
 
 
Stage 5: Thread Activity Monitor 
 We have covered some key concepts such as threads, 
priority, semaphores, pre-emption and mutexes. But most of the 
activity is happening within VOS and we don’t get to see it. Yes, we 
have a blinking LED3 and ample progress messages being displayed 
but I want to SEE the real time operation of the VOS so I created a 
Thread Activity Monitor which is the subject of the Stage 5 example. 
 
 The concept of my Thread Activity Monitor is simple: I will use 
an 8-bit IOPort and I will assign a bit to each thread; when the thread 
is running it will set this bit and when it passes control to VOS it clears 
this bit. I then attach a logic analyzer to this IOPort and I can then 
capture thread activity in real time. Note that this approach is not 
perfect since I do not detect the pre-emption case when VOS starts up 
a higher priority task but I found the tool enormously educational and I 
am sure that you will too.   
 
Using a Logic Analyser 
 I have used the USBee line of products (see 
www.USBee.com) since their first introduction and my USBee DX is in 
constant use. You saw it in Part 1 of this book and you will see it again 
in later chapters – I find the tool invaluable. In this chapter I will use 
the DX tool in its logic analyzer mode to trace 8 signals initially (more 
later, the DX supports 16 digital inputs and 2 analog inputs) and these 
are connected to the V2EvalBoard as shown in Figure 8.4. I am 
impressed by the DX tool’s human interface – it collects data up to 
24MHz and you can view this as say, six seconds across the screen 
or zoom in to show 6 microseconds across the screen. You choose 
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the zoom level to allow you to focus upon the level of detail that is 
important at the time. The trace can also be saved as a file and 
emailed to someone who then uses the USBee DX software as a 
viewer.  I have used this ability countless times to shown both clients 
and vendors some timing issue with a product. 
 

 
 

Figure 8.4: Connecting the USBee LA to the V2EvalBoard 
 
 We have driven IOPorts before and know that this requires 
the IOMUX and GPIO device driver. The LA pins need to be bi-
directional since we do a read-modify-write operation to set or clear 
individual bits. So how do we handle bi-directional signals on a 
Vinculum-II? 
 
 We have two choices in handling bi-directional signals: we 
could use a single IOPort and switch its direction at run-time (set IO to 
input for a read, then set to output before a write) or we could use two 
IOPorts with one set as a input and the other set as output. I tried both 
methods and concluded that using two IOPorts resulted in smaller 
code that was easier to explain. The Vinculum-II has five 8-bit IOPorts 
and, so far, I have only used 1 bit on 1 of the ports so I decided that 
using two of the IOPorts for my LA function was OK. 
 
 Each thread is assigned an ID (how is described later) which 
is a single bit: 1,2,4,8,16, or 32 is enough for 6 threads. The 
ThreadRunning procedure will set the corresponding bit on the 
Logic Analyser port and the CallVOS procedure will clear it.  I chose 
IOPorts C and D for my LA function and the pin routing is added in the 
InitDevices procedure within initialize.c and the attachment 
of two GPIO device drivers is covered in the StartupDevices 
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procedure. You should review these now and note that this is ‘more-
of-the-same’. Yes, the bi-directional aspect is new but it follows the 
same format as previous IOMUX commands. 
 
 Open the Chapter8/Stage5 project and view TAM.c since this 
is the core of the Thread Activity Monitor. I show part of this code in 
Figure 8.5 for convenience. 
void ThreadRunning(BYTE ThreadID) { 
// The thread now has the CPU 
    BYTE PortData; 
    vos_dev_read(hDevice[LA_In], &PortData, 1, NULL); 
    PortData |= ThreadID; 
    vos_dev_write(hDevice[LA_Out], &PortData, 1, NULL); 
    } 
 

Figure 8.5: The Thread Activity Monitor toggles IO pins 
 
 I felt it important that we understand the effect of the TAM 
routines on the overall program performance.  We are adding to 
existing code to increase observability and, as Hiesenberg stated, this 
will change the system that we are trying to measure. We don’t want 
to change it significantly so we should measure the impact of the 
added code on system operation. Check that the first line of main.c is: 

#define Test_TAM 1 
 
 This causes only the TAM_Test thread to be created, see line 
96 to 102 of main.c The vos_create_thread system call allows 
parameters to be passed into a thread; the 4th value is the byte count 
of values (we are just passing a byte) and the 5th and subsequent 
values are passed into the thread as parameters (we pass in a 1).  
The TAM_Test thread, also shown in Figure 8.6 simply calls our two 
TAM routines. 
 
void TAM_Test(BYTE ThreadID) { 
// Test VOS response times just toggling the LA signals 
// Other tasks are not running for this test 
    StartupDevices(); 
    while (1) { 
        CallVOS(ThreadID); 
        ThreadRunning(ThreadID); 
        } 
    } 
 

Figure 8.6: A test to understand the impact of the TAM code 
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 Build, download and run Stage 5 and capture the activity on 
the IOPort using the USBee DX (or similar Logic Analyser). Figure 8.7 
shows a close up of the waveform I collected and also a view covering 
about 1.5 msec. As seen, the thread activity signal is toggling at about 
40 usec – this is pretty impressive since the TAM routines need to 
make two VOS calls to toggle a bit. And 40 usec is small enough such 
that it can be considered an insignificant impact to our program.  

 
Note too that the 40 usec interval lengthens to about 70 usec 

at regular 1 msec intervals – this is the VOS timer interrupt and we 
see that the service routine time is really small. FTDI have obviously 
tuned their kernel for best performance! 

 

 
 

 
 

Figure 8.7: The TAM code is a minimal impact on performance 
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It is now time to look at the activity of our threads so stop the 
program and change the first line to be  

#Define Test_TAM 0 
 
This will enable a new thread that I created for illustration 

purposes. MyIdleTask is a thread that uses 100% of the CPU – it 
toggles bit 7 of the LA port to show activity. I set the priority of this 
thread to be the lowest value, 1, so that it can be pre-empted by any 
other task. The VOS Idletask has a priority of 0 and will not have the 
opportunity to run due to MyIdleTask.  I have effectively replaced the 
VOS IdleTask with mine.   Therefore, toggling on bit 7 of the LA trace 
will indicate that VOS is running MyIdleTask.  Now check inside the 
‘do forever’ loops of the Blink and HelloWorld threads.  I added TAM 
instructions to produce activity on the LA port.  I also added additional 
instructions within display.c to show when the mutex lock was ON 
and OFF – we will see the result in a moment. 

 
Build, download and run Stage 5 and collect a LA trace. 

Figure 8.8 shows a zoom-in detail of thread 1 = Blink operation.  Note 
the time between the X1, X2 cursors is about 1msec.  I saved this 
USBee file in the examples directory so that you can study it. 

 

 
 

Figure 8.8: Detailed view of thread execution 
 
An overview would show that the program is spending >99% 

of its time in the IdleLoop – we should expect this for such a simple 
example. The zoom-in detail shows that Blink started as a result of a 
timer interrupt and it locks the mutex while writing its data to 
LocalBuffer and then sending this on to the UART driver. 
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Stage 6: Adding Buttons 
 We shall now add buttons to our example so that I can 
illustrate the VOS-way of handling buttons. The V2EvalBoard has 4 
user buttons as shown in V2Eval:Section 5.12 and I chose SW3 and 
SW4. SW3 is connected to pin 14 of a 64-pin device which is IOBUS3 
so this needs to be attached to bit3 or bit7 of an IOPort. Similarly SW4 
is on pin 32 which is IOBUS20 so this needs to be attached to bit7 or 
bit3 of an IOPort.  The Vinculum-II has five 8-bit IO ports but note that 
PortB and PortA have additional capabilities with respect to interrupts. 
PortB includes the ability to wait for a rising, falling or changing edge 
on any of the 8 bits so I chose PortB to handle my two buttons. 
 
 Load the Stage6 project and view initialize.c. Note the 
added pin routing for SW3 and SW4 in InitDevices and the 
attachment of another instance of the GPIO driver to manage the 
buttons. We now have four instances of the GPIO driver – VOS will 
use the same code block for each instance but will allocate a separate 
data area for each instance. 
 
 Now view main.c, where I have added a Faster thread to 
manage SW3 and a Slower thread to manage SW4. I also removed 
the HelloWorld thread and the TAM_Test thread since they have 
served their illustrative purpose and are not needed any more. The 
Vinculum-II has five interrupts that can be waited upon, four for 
individual bits on PortB and one for a change on PortA.  If you have up 
to 4 buttons then connect them to PortB. The next 8 buttons would be 
connected to PortA and some polling software will need to be added 
to discover which of these additional 8 buttons was pressed. If you 
have more than 12 buttons then these will be handled using an 
external peripheral and this is described in Chapter 11.  
 
 The Faster and Slower buttons modify a global variable, 
called Delay, that Blink uses as a parameter in vos_delay_msecs. A 
purist would control write access to Delay using a mutex but since this 
situation can only occur if both the faster and slower buttons are 
pressed exactly together and this results in no change in Delay then it 
doesn’t matter if the value if increased/decreased for a brief moment. 
 
 Now build, download and run Stage6.  Press SW3 and then 
SW4 to see the blinking period of LED3 change. You should also 
capture several seconds of LA trace and observe the running threads. 
My capture showed that the IdleTask still dominates – there is ample 
CPU power to do many more things! 
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Stage 7: Kitt scanner 
 Stage 7 is optional and may be skipped. It involves building a 
piece of hardware as shown in Figure 8.9. This is a 10 segment LED 
bar (I use 8 of them) mounted on a circuit board with a resistor pack 
and connector. It is designed to plug into the IO connectors of the 
V2EvalBoard.  I am reluctant to solder onto the bread board area of 
the V2EvalBoard since I do many projects and you may be the same. 

 
 
 
 
 
 
 
 
 
 
 

Figure 8.9: An LED bar module built for Stage 7 
 
 I liked the scanning pattern of FTDI’s Kitt example and I have 
added a thread called Kitt, to our Stage 6 example code. It uses the 
same Delay variable as Blink but I would expect you to run this much 
faster to get the desired visual effect. 
 
 We need 8 pins to connect the LED bar module to and the 
example so far is using Connector CN3 (V2Eval: Section 5.2.1) for 
SW3, SW4 and LED3, connector CN5 for the UART (V2Eval: Section 
5.2.1)  and is using the connector CN7 (V2Eval: Section 5.2.5) for the 
Logic Analyzer connection. This leaves CN4, CN5, or CN6 to connect 
to our LED bar module. I decided to drive both from PortA so you can 
connect the LED bar module to CN4 or CN6. Note that if you build 
more than one LED bar module then be careful note to draw more 
than 500mA from the USB connection to the PC. 
 
 Open the Stage 7 project and view main.c. The new Kitt task 
is similar to the Blink task except that it does a little more processing 
to generate the scan pattern. Initialize.c is extended to include 
the additional pin routing and initialization of yet another GPIO driver.  
 
 Build, download, and run Stage 7 and watch the scanning kitt 
pattern. This can be run faster by pressing SW3. Again this simple 
thread adds hardly any load to the CPU which still has over 95% of its 
time spent in the IdleTask. 
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Stage 8: Using DIL modules 
 Stage 8 is also optional – I move our stage 6 example onto a 
different development platform and this stage discusses the changes 
made to the program. Figure 8.10 shows the new target hardware – it 
is a V2DIP1-32 module, a debugger module and a TTL232R cable 
(yes, the same cable that we used in Part 1!) used to create a serial 
port connection to the PC. From the PC’s perspective I need 2 USB 
ports, one for the Debugger module and one for the TTL232R cable 
but the IDE and V2EvalTerm both recognize this hardware and readily 
connect to it. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.10: The same code runs on the DIL modules too 
 
 The solderless breadboard shown in Figure 8.10 also has the 
equivalent of LED3, SW3 and SW4 connected. I had to forgo the logic 
analyzer connection since I didn’t have enough IO pins. If you have a 
48- or 64- pin DIL module then you could replicate the Logic Analyzer 
connection. 
 
 Load the Stage 8 project and view initialize.c since all 
of the changes to run on new hardware are in this module. Note that 
Ports D and C are still being used for the Logic Analyzer but I have not 
connected these ports to physical pins (because I didn’t have 
enough). I could remove the code from within the TAM routines but, 
since their impact on system operation is so small, I decided to leave 
the code as is, to highlight the minimal changes required to the source 
code when moving between Vinculum-II development modules. All 
that is typically required is changes to InitDevices. 
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 Now build, download and run the Stage 8 example on the new 
hardware. LED3 blinks at a rate determined by pressing the faster and 
slower buttons as before. Progress messages are sent at 3 Mbaud to 
the V2EvalTerm that displays them as before. 
 
 
Chapter Summary 

I trust that this chapter has given you a good insight into the 
new concepts and challenges when writing applications programs for 
the Vinculum-II. The integrated VOS forces a structure to the 
application program which makes it easier to modify and expand. 
There is a LOT of initialization to do that sets up our program as a set 
of threads that use semaphores and mutexes to interact in a 
controlled fashion. All peripherals are accessed using a consistent 
device driver API. I wouldn’t call it easy yet, but, by the end of Chapter 
10, you’ll at least consider writing Vinculum-II applications as straight-
forward. 
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Chapter 9: Building a ‘Smart Device’  
 
 This chapter explores the USB capabilities of the Vinculum-II.  
We will build a device, show Figure 9.1, that fits between your PC and 
your keyboard + mouse and can record and playback keystrokes and 
mouse movements.  This comprehensive example will be 
implemented in stages and VOS programming techniques will be 
demonstrated on the way.  You will discover that developing a USB 
host application or a USB device application follows exactly the same 
process as the GPIO and UART applications in Chapter 8; there will 
be more software to write since we have more data to handle but the 
staged implementation will make this easy to follow. 
 

 
 

Figure 9.1: The example creates a smart device 
  
 Figure 9.1 shows a mouse connected downstream of the 
keyboard – my keyboard has an integrated hub, many do, but if yours 
does not then we will add and external hub later in the project (when 
we add the mouse).  This will have no impact on our application 
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software since the Vinculum-II host driver includes a hub class driver 
(more details later). 
 
 I decided to start with the USB Host driver and the physical 
keyboard since this makes this example easier to explain.  Before we 
jump into code however, I wanted to recap some essential USB 
theory. 
 
 The Vinculum-II is quite a departure from FTDI’s current 
product line, which I covered in Part 1 of this book.  You can design 
and deploy their current product line knowing little about USB since 
they are fixed-function devices that implement the details of USB 
within the silicon and their drivers.  Vinculum-II is at the other end of 
the scale since it can be programmed to be ANY USB device and also 
be host to ANY USB device – this means that we need to be familiar 
with USB concepts such as descriptors and device classes. 
 
 There are two good books on USB theory – USB Design By 
Example by myself and USB Complete by Jan Axelson.  I prefer mine 
but I would recommend that you get Jan’s book since mine, even the 
Second Edition, is now quite dated.  I have made several proposals to 
Intel for updated versions but, unfortunately, we could not make an 
agreement.  The theory in my book covers low and full speed USB 
and that will be enough for our work with the Vinculum-II but the 
Win98-based examples do not work on the latest versions of 
Windows.  If the next few pages are confusing then you should pause 
and read Jan’s book, especially Chapters 11 and 12 in the fourth 
edition, then come back to this book. 
 
 A keyboard, and a mouse that we will add to this project later, 
are examples of Human Interface Devices (HID).  A HID need not 
have a human interface and can be considered as a “generic byte 
mover” and, since all USB-aware operating systems include a HID 
class driver, it is a popular interface to implement.  The HID 
specification includes a REPORT descriptor which describes how 
many bytes are moved between host and device and how these bytes 
should be interpreted.  This report structure is extensive since there 
are a vast number of diverse device types that fit into this category 
and the interested reader is also recommended to download the HID 
Specification and Usage Tables from www.usb.org. 
 
 A keyboard and mouse were the first HIDs to be implemented 
and their definition includes a pre-defined report structure that was 
called the boot protocol.  This is fully defined in Appendix F of the HID 
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Class Definition.  All keyboards and mice are required to support the 
reports of the boot protocol, shown in Figure 9.2, since the PC’s BIOS 
uses them before the operating system is up and running.  Modern-
day keyboards and mice have many more features compared with 
their mid 1990’s counterparts so the operating system will switch from 
boot protocol to report protocol early in its initialization.  For some 
reason the keyboard is required to power up using Report protocol 
and BIOS must issue a SetProtocol(Boot) – this seems backwards to 
me but since this is what the boot specification requires then we shall 
comply!  My example uses boot protocol only. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.2: All keyboards and mice support Boot Protocol reports 
 
 
Stage 1: Host Operation 
 Load the Chapter 9/Stage1 project and view main.c.  Note 
that it is similar to Chapter8/Stage6; I started with this project, 
removed the Faster and Slower threads and added a FindKeyboard 
thread.  I also removed the ThreadID and mutex display from dprint.  
We saw the effect of the mutex in Chapter 8 and I discovered that it 
was a rare occurrence for one thread to pre-empt another thread while 
in the dprint routine.  Removing ThreadID simplified the example and 
that is always good (make things as simple as possible, but no 
simpler!).  I also integrated the CallVOS and ThreadRunning 
procedures into a set of “instrumented” VOS calls – these can be seen 
in TAM.C.  There is a small change in Initialize.c to initialize the 
USB host controller driver but most of the new code is in modules 
host.c and DisplayDescriptors.c. 
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 Once started, the host driver will enumerate the device tree 
connected to a host port.  The host driver includes a HUB class driver 
and it will correctly walk down all connected hubs and identify devices.  
It builds a table of device interfaces; remember that a single USB 
device may contain more than one interface – this is called a 
composite device and is quite common.  The host driver all sums all of 
the alternate interfaces so the resulting count can be surprisingly 
large.  Most of the work of the new FindKeyboard thread is done in the 
WaitForKeyboard function in host.c, view this now. 
 
 After waiting for enumeration to complete we ask VOS how 
many device interfaces it found – we then query each interface to 
discover if it is a HID keyboard supporting the Boot Protocol.  VOS 
does all the work for us and there is no real need for us to look at the 
descriptors.  I decided, however, that it would be educational to 
display the descriptors of each attached device interface so I wrote a 
DisplayDescriptors function that you can view in 
DisplayDescriptors.c.  I have found this very useful during 
development.  I plug in random USB devices into the host2 interface 
(see V2Eval:Section 5.8) and its descriptors are listed in the 
V2EvalTerm Window. 
 
 Returning now to our FindKeyboard thread in main you note 
that it doesn’t do anything useful after proclaiming that a keyboard 
was found – this will be the topic for the next stage.  Now build, 
download and run the Chapter9/Stage1 project.  LED3 should be 
blinking and progress messages will be displayed in the V2EvalTerm 
window.  Now plug in a device into the host2 socket of the V2Eval 
Board and note that its descriptors are displayed.  Now plug in a hub 
and a collection of devices – VOS will correctly enumerate all of them.  
If a keyboard is one of the devices then this will be indicated on the 
display.  As you can see, it did not take much user software to 
discover devices attached to a Vinculum-II host controller.  VOS is 
doing most of the work for us! 
 
Stage 2: Serial-to-USB 
 Load the Chapter9/Stage2 project and view main.c.  I added 
a new DisplayReport thread that translates the fixed format keyboard 
report into ASCII and displays keystrokes in the V2EvalTerm window.  
The main loop of this thread is shown in Figure 9.3 and it is a typical 
“data-consumer” thread; it waits at the DisplayReport semaphore, 
receives ownership of the ReportBuffer, translates and displays the 
information and then returns the message to the sending thread.  This 
allows GetReports to fill in the next report. 
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Main loop of DisplayReports: 
  while (1) { 
// Wait for a Report to arrive 
    i_vos_wait_semaphore(ThreadID, &DisplayReport); 
// This thread now owns KeyboardMessage 
// Display Report on V2EvalTerm 
    ReportPtr = KeyboardMessage.ReportBuffer; 
    Modifier = *ReportPtr; 
    ReportPtr += 2; 
    for (i=2; i<8; i++, ReportPtr++) 
    if (*ReportPtr) HidUsageToASCII(Modifier,*ReportPtr); 
// Return ownership of KeyboardMessage 
    i_vos_signal_semaphore(ThreadID, 

 KeyboardMessage.ResponseSemaphore); 
    } 
   
Main loop of GetReports: 
  while (1) { 
// Wait for a report to arrive from keyboard 
    Status = i_vos_dev_read(ThreadID,hDevice[Host],(BYTE*)&xfer, 
                      sizeof(usbhost_xfer_t), NULL); 
    if (!Status) return dprint("Error (%d) ", &Status); 
// Send the Report off to be processed 
    i_vos_signal_semaphore(ThreadID, Message>SignalSemaphore); 
// Need ownership of Message to continue 
    i_vos_wait_semaphore(ThreadID, &Returned); 
    } 
 

Figure 9.3: Threads are consumers or producers 
 
 The work to fill the report is handled in GetReports that is 
called from the FindKeyboard thread.  I moved the code to host.c due 
to its size (I like to keep main.c small and we have a lot more to add 
incrementing our way through the stages of this example).  After some 
initialization the GetReports main loop, also shown in Figure 9.3 is a 
typical “data-producer” thread.  It sets up a ReportReceived 
semaphore which VOS will signal once a report arrives from the 
keyboard then signals the availability of this report using the 
DisplayReport semaphore. 
 
 Figure 9.4 shows a message flow diagram of Stage 2 – there 
are some key concepts that I must cover before we get too deep into 
this example.  Take a quick peek at the structure of Figure 9.11 which 
shows the final message flow diagram – there is a lot going on!   
 
 Threads are shown in yellow, rounded rectangles and 
semaphores are shown as smaller, blue rectangular boxes on colored 
arrows.  The arrows depict the flow of messages.  But what is a 
message?  And how does it flow? 
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Figure 9.4: Message flow diagram of stage 2 
 
 
Message Passing 
 I use the term message to encapsulate a user-defined block 
of data (see MessageType in main.h).  Think of it as a piece of paper 
with useful data written upon it.  Ownership of this message is 
important – if a thread owns a message then it may read and write 
data within it.  On startup the GetReports thread owns the 
KeyboardMessage message and it will write useful data, such as a 
report from the keyboard, into this message.  When the message is 
complete it “sends” it to the DisplayReports thread – I do this by 
writing to the DisplayReport semaphore and, using my definition, this 
means that the DisplayReports thread now owns KeyboardMessage 
so it can read and write within it.  GetReports is not permitted to 
change KeyboardMessage after it has passed it to DisplayReports – 
this is a rule I define. 
 

Once DisplayReports has finished with the message it sends 
it back to GetReports so that it can write the next report on it.  Again 
think of a message, or piece of note paper, passing between the two 
threads as the mechanism to exchange data.  I implement this using 
two semaphores and a shared MessageType data structure.  No data 
actually moves, in fact, I keep data copying to a minimum for good 
system performance, but this concept of message passing makes it 
easier to understand the flow of data amongst the threads. 
 
 There is nothing that prevents the thread that does not own 
the message from reading or writing within it.  This will cause data 
corruption and may cause our program to fail.  I did consider 
protecting my messages using a mutex but the added lock and unlock 
VOS calls made the implementation cumbersome.  I also realized that 
using a mutex does not GUARENTEE that the message data is not 
written by the non-owning thread.  Using a mutex is a programming 
convention which the programmer can break by changing a 
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“protected” variable without first obtaining the required mutex.  Using 
my message passing scheme requires adherence to another 
programming convention – if you don’t own the message then 
don’t change it.  You own a message either by definition at startup or 
by receiving it from another thread.  You give up ownership by 
sending it to another thread. 
 
 The observant reader will discover that the program names 
the thread FindKeyboard and this, in turn, calls a procedure called 
GetReports.  Once a keyboard is found the FindKeyboard thread will 
spend all of its time in the GetReports procedure, in fact, the last few 
lines of the GetReport procedure. So I felt it reasonable to call this the 
GetReports thread in Figures 9.3 and 9.4. 
 

Now build, download and run the Chapter9/Stage2 project.  
Attach a keyboard and type on it.  The keystrokes that you enter will 
be displayed in the V2EvalTerm window.  We have a serial-to-USB 
keyboard; interesting but probably not worth making into a product.  
Most people want a USB-to-Serial adaptor (ie FT232R) rather than a 
Serial-to-USB adaptor. 
 
 This stage2 example has shown that it is straight forward to 
attach a HID to the Vinculum-II – we shall see in the next chapter that 
connecting other device classes is also easy. 
 
 
Stage 3: Device Operation 
 The Vinculum-II support two USB channels and either can be 
a host controller or a device.  Let’s now look at creating a HID using 
the other USB port.  Note that you must disconnect jumper JP5 (see 
V2Eval:Section 5.13) and we will need to attach the USB gender 
changer as shown in Figure 9.6.  I should mention that FTDI has a 
ready-built driver that makes the Vinculum-II operate like a FT232 
device – this works with the same PC drivers as a real FT232R so 
bulk data transfers are already done for you (see FTDI’s FT232R 
Slave example which is provided with the IDE). 
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Figure 9.6: USB device development uses a USB gender changer 
 
 All of FTDI’s documentation uses the term “slave” when 
describing operation as a USB device – I personally don’t like the term 
but acknowledge that the term “device” is over-used and can be 
misunderstood so, for the remainder of this book, I shall also use the 
term “slave.” 
 
 Load the Chapter9/Stage3 project and view main.c.  The 
EnumerateSlave thread waits for Setup packets to be sent from the 
PC then handles them.  Most of the slave code is in Slave.c and you 
should view that now.  All USB devices use descriptors to define their 
identity and the descriptors in slave.c define a HID keyboard with boot 
protocol.  The report descriptor describes the boot report format 
shown in Figure 9.2.  During enumeration the slave will receive 
standard “Chapter 9” setup packets and also HID Class setup packets 
and the procedures in slave.c provide the correct responses.   
Initialize.c contains additional code to initialize the slave driver and to 
get handles for the slave’s control and data endpoints. 
 
 Now build, download and run the Stage3 project.  I would 
recommend a USB bus spy, such as the Ellisys Tracker shown in 
Figure 9.7 when working at this low level of USB.  The bus spy is 
connected in series with the V2EvalBoards connection to the “target” 
PC and it is controlled by a different “development” PC as shown in 
Figure 9.7.    The Stage 3 program will enumerate our device/slave 
and the target PC will proclaim that another keyboard has been 
added. Using a bus spy, and its required PC, is not essential for this 
example but it will save you debug time when developing your own 
descriptors. 
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Figure 9.7: I recommend a bus spy for detailed USB work 
 
 
Stage 4: Auto-typer 
 Now let’s get our new keyboard device to do something!  Load 
the Chapter9/Stage4 project and view main.c.  I have added two 
threads, CreateKeystrokes and SendReports, that share a 
KeyboardMessage and a SendKeyboardReport semaphore.  
CreateKeystrokes is the producer thread that generates keydown and 
keyup reports exactly like a real keyboard does; it sends these to 
SendReports, a consumer thread, which sends them to the target PC. 
 
 Open a word processor on your target PC and then build, 
download and run the Stage 4 project.  The V2Eval board will happily 
type “Hello World” into your word processor all day!  We have created 
a USB device that operates like a keyboard. 
 
 
Stage 5: Host+Slave Operation 
 We shall now combine Stages 2 and 4 to create stage 5.  
Load the Chapter9/Stage5 project and view main.c.  I used the 
FindKeyboard thread from Stage 2 which now sends its reports using 
KeyboardMessage to the SendReports thread from Stage 4.  The 
code within each of these threads is unchanged.  I am combining two 
previously written threads to create new functionality.  This is possible 
since each thread is self contained and exchanges data using my 
standardized message passing mechanism. 
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 Build, download and run the Stage5 example code.  You can 
type on the keyboard attached to the V2EvalBoards host2 port and the 
slave1 port will appear to the target PC as a real keyboard.  We have 
the Vinculum-II operating as a short circuit!!! 
 
 I want to slow down a little here and recap what we have 
achieved so far.  We have used Vinculum-II’s USB host driver to 
enumerate real devices connected to USB port 2.  We identified a 
keyboard and wrote a thread which collects keystroke reports.  We 
created a message containing information about a keystroke report 
and sent this to another thread that used Vinculum-II’s USB slave 
driver to send keystrokes to a target PC connected to USB port 1.  We 
also have a debug console attached to Vinculum-II’s UART driver 
which displays progress in V2EvalTerm’s window.  The result is 
keystroke reports passing into the Vinculum-II and out the other side – 
it’s a short circuit but we have access to all of the data involved in 
these exchanges.  Let’s see what we can do with this data. 
 
 
Stage 6: KeyCatcher 
 It is easy to add a thread between the GetReports thread and 
the SendReports thread, in fact, neither thread will know that we have 
done this and will operate unchanged.  This new ForwardReports 
thread will forward the KeyboardMessage unchanged and SendReport 
will return it as before.  ForwardReports will use a RecordMessage to 
make a copy of each keystroke report and will send this to a Record 
thread that will store the reports, and the time intervals between them, 
in a Flash memory.  The data flow diagram for this keycatcher device 
is shown in Figure 9.8.  Note that we now have two messages, shown 
in different colors, circulating around these threads. 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 9.8: Message flow diagram of stage 6 
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 I chose an Atmel Dataflash to store the keystroke data.  I used 
a low-cost 2MB part but you can get these up to 32MB.  The part uses 
an SPI interface so we need to add Vinculum-II’s SPI Master driver to 
our project.  I built a plug-on board, shown in Figure 9.9, that connects 
to C9 of the V2EvalBoard – see V2EvalBoard:Section 5.3.  I also 
added a Timer driver that measures the elapsed time between 
keystrokes.  Both drivers are started and initialized in initialize.c.   

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 9.9: A small add-on board holds the Atmel DataFlash 
  
 Load the Chapter 9/Stage6 project and view main.c.  I made a 
small change to the FindkeyboardThread – it initializes the 
KeyboardMessage.SignalSemaphore to a new semaphore; this will 
cause GetReports to send completed keyboard reports to a different 
location.  A new thread, ForwardReports, makes a local copy of the 
keyboard report before sending it off to the SendReports thread.  The 
ForwardReports thread owns RecordMessage at startup and uses it to 
send keyboard reports to another new thread, Record. 
 
 The Record thread has the most work to do and it owns 
writing Entries to the Atmel DataFlash.  The definition of EntryType 
(see main.h) allows Record to save both keyboard reports and mouse 
reports (these will be added in Stage9).  Elapsed time between 
keyboard/mouse reports is also recorded so that later playback will be 
at the same tempo as the original recorded data.  The Atmel 
DataFlash is an impressive part – it saves data in 512 byte blocks and 
it has two 512 byte buffers to stage data before writing a block.  The 
Record thread fills one buffer then, while this buffer is being copied to 
flash memory, it fills the other buffer.  This approach effectively hides 
the long flash write time. 
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 Build, download and run the Stage6 project.  Externally you 
will not see a difference from Stage5 but the debug messages will 
explain what is going on. I debugged this module using three channels 
of the USBee DX connected to the SPI lines on V2EvalBoard:C9.  I 
looked for the Record thread being active then turned up the 
resolution to see the SCLK, MISO, MOSI, and CS signals.  The 
USBee DX includes an SPI decoder so it was easy to check that all 
signals were correct. 
 
 We now have the basics of a keycatcher product working.  
The next stage adds a Record Button so that we can control when 
data is recorded. 
 
 
Stage 7: Add a Record Button 
 We already know how to manage buttons from the Chapter 8  
example but this is not the complexity of this stage.  The data flow 
diagram of Stage7, shown in Figure 9.10, shows that the Record 
thread must now respond to two semaphores.  This is something that 
we have not done before. 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.10: Message flow diagram of stage 7 
 
 Load the Chapter9/Stage7 project and view main.c.  Note that 
I have added a RecordButton thread (cut, pasted and renamed from 
Chapter 8) that signals a RecordControl semaphore when the button 
is pressed – the button is implemented as a toggle function for 
Record.  I also changed the Blink thread to keep LED3 on during 
record so that it is easy to know when keystrokes are being recorded.  
All of the new work in the Record thread so you should now focus 
there.  Note that VOS supports waiting at a list of semaphores.  A list 
is created with some control flags – in this example I will wait on ANY 
semaphore but you can also wait on ALL of the semaphores being 
signaled before proceeding.  You use a vos_wait_semaphone_ex call 
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to wait on a semaphore list and, when it returns (in ANY mode) it 
provides an Index into the semaphore list indicating which semaphore 
was signaled.  Since I have only two entries in my list then I will 
receive an Index of 0 or 1 which my code treats as a Boolean.  I will 
wait on three semaphores in Stage 9.  There I also convert this 
semaphore list initialization into a function that I move to Support.c. 
 
 Build, download and run the Stage7 project.  You can now 
press SW3 to enable and disable recording.  LED3 will stay on during 
recording. 
 
 
Stages 7.1 & 7.2: Short diversion to reclaim memory 
 When I first started stage 8 I realized that I had a BIG 
problem:  my stage 7 solution had used most of the available 16 KB of 
RAM and there was no room for more threads!  I had plenty of 
program space available, I had used 100 K of the available 256 KB of 
flash but I had to do something about RAM usage. I added 
instrumentation code to stage 7, creating stage 7.1, which showed 
how the RAM was being used. The results are shown in the left side of 
Figure 9.11. 
 

To my surprise the .dataram segment was almost 2 KB!  The 
.dataram segment includes initialized data which is set up in ROM 
and copied to RAM at power up. Investigation showed that most of 
this was the text for my dprint statements; I was not expecting this 
since other compilers that I use put this constant data in the code 
segment. I tried to force the compiler to place my constant strings in 
the code segment by replacing the dprint(“Message”, DataPtr) 
with dprint(rom “Message”, DataPtr) but the compiler complained 
with “unexpected ROM”. To get to get my constant text in ROM I had 
to convert my dprint statements into two lines;  

 
rom char Message1[] = “Message”; 
dprint(&Message1[0], DataPtr); 
 
This works but it is not as elegant as print(rom “Message”, 

DataPtr) so I have requested that FTDI extend the syntax of the rom 
keyword usage. For now, however, will have to go with the two-line 
declarations. I changed the dprint function to handle rom char and 
also all the message declarations and called this Chapter9/Stage 7.2 
which you should now review. 
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Figure 9.11: Stage 7 RAM usage, before and after 
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The other big RAM user is to stack space for each of the 
threads. VOS includes some diagnostic features (see DIAGNOSTICS 
section of vos.h) that can help us here. VOS initializes the stack of 
each thread to a known pattern and the VOS call vos_stack_usage() 
steps through the stack to determine usage; I added code in the Blink 
thread that displays systems statistics after the program has been 
running for about a minute. My test showed that some threads use 
little stack space so I could allocate a smaller TCB to these; this is 
also included in stage 7.2 
 

FTDI have an applications note, AN_157 Vinculum-II Memory 
Management, which also recommended changing the compiler 
optimization to level to 1. This uses a different algorithm for allocating 
local variables and had a large impact on reducing the stack usage. 
So on all projects from now on, I set Build/Options/VNC2 Compiler/ 
Optimization Level to 1. The right side of Figure 9.11 shows the 
results of moving the dprint text to ROM and using smaller TCB's for 
some of the threads. I freed up almost 4 KB of RAM. 
 

Another VOS diagnostic feature is a Thread Profiler. Once 
started it keeps track of which thread was running at each timer tick; it 
increments a thread-specific counter so I included code to extract and 
display the count values for each of my threads. Load and run the 
Chapter9/Stage 7.2 project now and record some keystrokes within 
the first 45 seconds of operation. After about 1 minute stats will be 
printed. A little math on the count values shows that the IdleTask is 
running 98.6% of the time; our key capture application uses only 1.4% 
of the CPU’s time. We have ample scope to add playback and mouse 
tracking and this is the subject of the next two stages. 

 
 
Stage 8: Add Playback 
 In this stage we add a Playback button which will send the 
keystrokes that we recorded to the target PC.  Adding this playback 
function is about the same complexity as adding the record function 
and button.  From a data flow perspective, we are adding a Playback 
thread and a PlaybackMessage that will circulate between the 
Playback and SendReports threads.  The Playback thread initially 
owns PlaybackMessage and it sends keystroke reports that it reads 
from the Atmel DataFlash to the SendReports thread.  The Playback 
thread is controlled by a Playback button but it does not have to wait 
at two semaphores simultaneously.  The SendReports thread must be 
extended to monitor two message streams – I use a semaphore list 
just like the previous stage.  So no new theory to learn here! 
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 Load the Chapter9/Stage8 project and view main.c.  A 
PlaybackButton thread is added – this is a cut, paste and renamed 
from the Chapter 8 example.  The Playback thread is also new and 
you should review that now.  Build, download and run this Stage 8 
project and press the Playback button.  Keystrokes that you recorded 
in Stage 6 or 7 will now be sent to the target PC as if you were typing 
them. 
 
 
Stage 9: Add a mouse  
 A boot mouse is similar to a boot keyboard from a software 
point of view – it is a HID that generates a 3 byte report rather than an 
8 byte report.  This means that our example code does not have to 
extended very much to support the addition of a mouse.  In fact, you 
will see that, in some cases, we will use the same code but will 
process different data.  Figure 9.11 shows the message flow diagram 
of Stage 9 with the mouse functions added in a similar way to the 
keyboard functions.  The GetReports(Mouse) thread will own a 
MouseMessage that it circulates around the ForwardReports and 
SendReports threads.  All threads have to be extended to support the 
new mouse reports but, as you shall see, this is basically a copy, 
paste, and edit of existing keyboard functionality. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.12: Message flow diagram of Stage 9 
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 Open the Chapter9/Stage9 project and view slave.c.  Note 
that I extended the descriptors of our slave device to define a 
composite device with two HID interfaces.  Interface0 is our keyboard 
as before and Interface2 is a boot protocol mouse that uses EP2 for 
data transfers.  I needed a MouseReportDescriptor to define the 3 
byte report and this is shown in slave.c.  Most of the Setup code for 
the Mouse can use the same code as the keyboard since they are 
similar HID devices – the only real difference is that I must supply a 
different report descriptor for Interface1. 
 
 Looking briefly at main.c you should note a new thread called 
FindMouse that is basically a copy, paste, and edit of the 
FindKeyboard thread.  The FindMouse thread will call a WaitforMouse 
procedure which is in host.c – lets look at this now. 
 
 I converted the original WaitForKeyboard function into a 
WaitForDevice function with a few additional parameters.  I then have 
two small front-end procedures, WaitForKeyboard, and WaitForMouse 
that both call WaitForDevice but with different parameters.  So the 
additional code for a mouse is minor. 
 
 In order to additionally connect a mouse to the V2EvalBoard 
we will need a HUB.  Some keyboards have an integrated hub and 
this is a convenient way to add a mouse.  Another convenient way is 
to use FTDI’s FT4232H Hub Module and this is described in Chapter 
11.  If your keyboard does not have an integrated hub then use any 
commercial hub product, attached it to the V2EvalBoard and plug a 
keyboard and mouse into it.  The WaitForDevice function will correctly 
find a keyboard and mouse that are connected via hubs – there is no 
additional programming required for this situation. 
 
 Returning now to main.c and the FindKeyboard and 
FindMouse threads.  Note that they both call GetReports but with 
different parameters.  At runtime we will have two copies of 
GetReports running, one in the FindKeyboard context and one in the 
FindMouse context – only one procedure exists in ROM but we are 
running two copies of it, same code but different data.  This is a real 
savings in code size.  For ease of explanation I call these 
GetReports(keyboard) and GetReports(mouse) threads in Figure 9.11. 
 
 The ForwardReports and SendReports threads are extended 
to accommodate the additional circulating MouseMessage.  This 
involves adding a new semaphore to each thread and extending the 
semaphore lists in each.  The processing of mouse reports is the 
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same as processing keyboard reports.  Finally the Record thread was 
extended to include processing of the mouse report which is handled 
in a similar way to the keystroke reports. 
 
 Build, download and run the Stage9 project.  Press the record 
button, move the mouse, and type some characters.  Press the 
playback button and watch the cursor move on the target PC and 
watch characters appear.   
 

Pretty impressive. 
 
 If you haven’t been checking the USBee DX Logic Analyser 
trace during each stage now would be a good time to turn it on.  Run 
the program, press the Record button and type some characters while 
moving the mouse.  I found my trace most illuminating!  I discovered 
that the program spends most of its time in the Idle Thread waiting for 
something to happen.  A keypress activates the GetReports(keyboard) 
thread, the ForwardReports thread then accepts the 
KeyboardMessage and in turn activates the Record and SendReports 
threads.  I found it warming to see the threads activated in the order 
that my program designed them to and it was clear that the 
KeyboardMessage and the RecordMessage flowed as designed. 
 
 
Ideas for improvement 
 This chapter has described a comprehensive example that 
has used USB host, USB slave, GPIO, UART, SPI Master, and Timer 
drivers.  A good next step would be to add more buttons and add 
routines that allow for multiple individual recordings to be made and 
played back.  This would create a smart device out of a standard 
keyboard and mouse where multiple repetitive sequences could be 
recorded and played back to simplify work flow in many applications.  
There is no new theory to learn to implement this smart device since 
Stage9 includes all of the routines that would be needed.  This 
expansion is left as an exercise for the reader. 
 
 
Stage 10: Multiple keyboards 
 One variant of this example that I wanted to cover before 
closing this chapter is the handling of multiple keyboards in a Wintel 
PC environment.  If you connect two keyboards directly to a Wintel PC 
the Windows operating system does an OR on the input and 
combines keystrokes from the two keyboards into a single input 
stream.  This is typically NOT why you connected two keyboards – 
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you wanted the separate input streams going to different places.  This 
stage 10 creates “user keyboard” devices that the operating system 
will not enumerate and exclusively own. 
 
 Load the Chapter9/Stage10 project and view slave.c.  I only 
have one keyboard report descriptor but I still have a composite 
device defined.  I have two interfaces both of which are keyboards, 
one does data transfers on EP1 and the other does data transfers on 
EP2.  The Vinculum-II supports seven data endpoints (EP1 through 
EP7) so you could extend this example with five more keyboards if 
desired. 
 
 Note that in the Interface1 descriptor I have used 0 for the 
Class Protocol and SubProtocol.  I also changed the report descriptor 
to a ‘generic 8 bytes’.  This will prevent Windows from recognizing it 
as a system keyboard and, instead, it will treat it as generic HID 
device.  I made a change to WaitForKeyboard in host.c so that 
identifies two individual keyboards but the GetReports function is 
unchanged.  Now focusing upon main.c you will see two threads 
FindKeyboard and FindUserKeyboard.  I removed the Record and 
Playback functions for simplicity. 
 
 Build, download and run this Stage10 project.  The target 
Wintel PC will correctly enumerate our composite device and typing 
on one of our external keyboards will result in keystrokes being 
recognized by the PC.  The other keyboard will be ignored. 
 
 Now look for the Windows console program, TwoKeyboards, 
also in the Chapter9/Stage10 directory.  The source code for this 
example is included as a Visual Studio project for your review.  Run 
this TwoKeyboards program on the target PC; it will find our 
composite device and identify how many additional keyboards it 
found.  Now type on both keyboards and note that keystrokes from 
one appear on one half of an output line and keystrokes from the other 
appear on the other half of the output line.  Keystrokes from each 
keyboard are kept together and are not intermingled as in the default 
case.  You can employ the techniques used inside TwoKeyboards to 
direct input from up to seven keyboards to separate windows in a 
more sophisticated application program.  I have done the “hard bit” 
using a Vinculum-II as a smart-device and expansion of this 
application is left as an exercise for the reader. 
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Chapter Summary 
 This was a long chapter but we covered an enormous amount 
of ground.  I used the HID class to demonstrate Vinculum-II’s ability to 
talk to a USB device and to be a USB device.  Both at the same time!  
The Vinculum-II tool suite also includes class drivers for Bulk-Only-
Mass-Storage (BOMS), Communications, Still Image and Printer.  We 
will use some of these in the next chapter.  These drivers and debug 
tools allow us to focus upon our application program which is 
developed as a set of communicating threads.  The threads are small, 
focused routines designed to do a single task well and this example 
has shown that they form re-usable building blocks that can be 
deployed in a variety of applications.  As you gain experience with 
VOS programs you will quickly learn that using an RTOS is an efficient 
and productive method to write programs. 
 
 So lets move on to Chapter 10 which will connect existing 
USB devices together.  This will definitely show that the sum is greater 
than the two parts. 
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Chapter 10: Interconnecting USB devices 
 

This will be a fun chapter - we get to be part explorer, part 
detective and part engineer. We're going to look at USB devices that 
you currently use, or would like to use, with your PC and we will re-
purpose these to operate in an embedded environment. We saw in 
Chapter 9 that adding a human interface device (HID) into a Vinculum-
II project was easy; now let's look at other interesting USB devices 
that can be used in an embedded environment. 
 

The range of available USB devices is enormous and, due to 
"PC economics", they are inexpensive; you can get a lot of 
functionality for low cost. In this chapter we will replace your PC with a 
sub $10 Vinculum-II and this cost reduction will open up new product 
opportunities! The benefit of a PC is that it is able to dynamically 
support all USB devices since it can be loaded with device drivers at 
runtime. Most of these devices have many configurable options which 
the PC must understand and select from. An embedded application is 
different - it has limited memory and is configured at design time. 
Typically it only has a few devices and the developer will pre-select 
the operating mode of each device. An embedded application will 
recognize the device by its Vendor ID (VID) and Product ID (PID)  so it 
is not necessary to read in and parse all of the device descriptors 
since these are pre-known by the embedded systems designer. This 
will simplify our coding effort. 
 

I assume that the USB device that we will be adding to a 
Vinculum-II embedded system is already running within your PC 
environment. An essential tool for our explorer phase is a USB bus 
spy. I use an Ellisys Tracker/Explorer but there are many other 
hardware tools available; Jan Axelson presents a variety of both 
hardware and software spy tools on her website at www.lvr.com. We 
are only interested in USB devices that operate at low or full speed 
since these are the speeds supported by the Vinculum-II. It is likely 
that your PC has high-speed USB ports so you also need a USB 1.1 
hub as shown in Figure 10.1; this will ensure that a high-speed mode 
of the USB device under test is not activated; the USB specification 
requires all high-speed devices to also provide functionality at full 
speed. 
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Figure 10.1: Equipment set up to explore USB device operation 
 
 
Audio In/Out device. 

I decided to start by exploring an audio device since this is a 
complicated device in the PC world but a simple device from a 
Vinculum-II perspective. I chose a representative USB audio adapter 
from cmedia as shown in Figure 10.2. This sub $10 part allows me to 
connect a monaural audio source, such as a microphone, and a 
stereo audio sink, such as speakers, to a PC. In the olden days this 
would have been an audio add-in card but today it is a single-chip 
USB component. 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 10.2: Representative audio device from www.cmedia.com 
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Enable your USB bus spy and attach an audio device to the 
PC. Once the device has been recognized (note that it will use 
standard class drivers as supplied with the operating system and you 
will not be required to supply a driver), run a sound recorder 
application and record about 10 seconds of audio. You may have to 
configure your PC hardware if your target PC already contains audio 
hardware. Now playback this audio.  Finally, stop the bus spy and look 
at the trace of USB operation. 
 

Figure 10.3 shows the general structure of the trace - the 
specific details will vary depending upon which audio device you 
selected and, to a certain extent, which OS you are using. The first 
phase of the trace shows the operating system reading the device 
descriptors and therefore discovering that this is an audio class 
device. This phase ends with the OS enabling the device via a 
SetConfiguration command, and selecting the zero bandwidth setting 
for the input and output interfaces; SetInterface(1,0), SetInterface(2,0). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10.3: Structure of trace of an audio device operation 
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Note that the configuration descriptor is much longer than the 
HID configuration descriptor we saw in Chapter 9. Most of the 
descriptors are audio class descriptors used to define the elements 
and topology of the analog components within the USB interface 
device. We could use the audio class specification to interpret these 
descriptors or we could do a Google search on the VID and PID and 
uncover a datasheet for the product; I chose the latter. 
 

The audio device I selected has a comprehensive datasheet 
at www.cmedia.com and I replicate the audio function block diagram 
in my Figure 10.4. The upper portion of the diagram describes a 16-bit 
stereo output channel that can run at 44.1 KHz or 48 KHz. The lower 
portion describes a 16-bit mono input channel that can run 44.1 KHz 
or 48 KHz. The input microphone can be directly mixed into the output 
stream. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10.4: Audio topology of my representative audio device 
 

The second phase of the USB trace shown in Figure 10.3 is 
the audio class driver reading in the settings of the audio hardware. 
The PC does this since the structure of the audio device is unknown.  
We will get the same information from the datasheet. 
 

My target PC was running windows XP and phase three is the 
PC enabling the audio output channel with a SetInterface(1,1) and 
setting the sampling frequency to 48 KHz so that it can play the 
familiar "bing-bong" when a new device is detected. The two channel 
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16 bit, 48 KHz sampling will result in 196 bytes per frame of 
isochronous transfers. This phase lasts 0.86 seconds and ends when 
the PC turns off the audio channel using a SetInterface(1,0). 
 

Phase four is the audio recording which the PC enabled via a 
SetInterface(2,1) and, in my case, it chose a sampling frequency of 
44.1 KHz for the single channel recording. This results in mainly 88 
byte isochronous transfers with about 10% 90 byte transfers to meet 
the 44.1 KHz sample rate. This phase ends with a SetInterface(2,0). 
 

Phase five, the audio playback, is similar to phase three. 
 

Wow. That took longer to explain than it took to execute! You 
will be pleased to hear that the embedded operation of the Vinculum-II 
is much simpler. 
 

We now put our detective hat on to discover the essence of 
audio operation. The PC has to do a lot of work to discover the 
topology and details of a particular audio device. We, as embedded 
engineers, will choose an appropriate component that meets or 
exceeds our products requirements. We will identify this using its VID 
and PID. So there is no need to read most of the devices descriptors. 
To start and stop audio transfers we need to select the correct 
alternate interface and set the sampling rate. We will choose 48 KHz 
since this gives a constant byte count per frame. That's all there is to 
do for embedded audio input and output! 
 

I have two audio examples that you can build upon. The first 
records audio onto a flash drive - it is a sound recorder. The second 
plays back audio from a flash drive - it is a sound player.  I only 
implement a single file in each example but I use the FTDI BOMS 
(Bulk Only Mass Storage) driver so that will be easy for you to add 
buttons and save or playback multiple files. Once you see how easy it 
is to record and playback audio using the Vinculum-II you may 
consider adding audio cues to your application. 
 
Sound Recorder. 

The 16-bit mono, 48 KHz sampling rate produces 96 bytes 
every frame or 96 KB/sec.  I measured the throughput of a range of 
flash drives and discovered that the data transfer rate was dominated 
by the MSC protocol; 512 byte data transfers typically completed in 
one or two frames but the MSC command and data phases added 
another three or four frames to the transfer. This overhead would be 
insignificant on large data transfers but the limited buffer space on the 
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Vinculum-II meant that I could only do single sector writes. The BOMS 
driver did, however, manage large transfers in a sensible way by 
keeping local copies of FAT tables and only updating the flash drive 
when absolutely necessary. 

 
I used a 1.5 KB buffer as shown in Figure 10.5 since sixteen 

96 byte transfers fit in neatly as shown. I wrote each sector buffer as it 
was filled and could typically keep up with the isochronous data rate. If 
we don't want the recording to skip then we must reduce the data rate 
by sub-sampling the isochronous data (or choose an audio source 
with a lower sampling rate!)  For voice recording 8 KHz is adequate so 
saving every sixth sample would make the data rate very easy to 
manage.  If you need 48 KHz sampling then review FTDI’s VMusic2 
example which uses MP3 compression to reduce the data rate. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10.5: Buffering isochronous data and sector writes/reads  
 

Open the Chapter10/SoundRecorder project and review 
main.c. The application program waits for a flash drive to be 
connected to host port 2 and waits for the Cmedia device to be 
connected to port 1. Once both are connected a sound.dat file is 
created and recording continues until either device is removed or the 
flash drive is full. The sound that file will not be recognized by the PC 
since it does not have a standard file format. I wrote a Windows 
console program that creates a standard Windows WAV file from 
sound.dat so that the data can be processed by any Windows 
application.  If a helpful reader would like to send me an OS X version 
then I would be most grateful and will redistribute it to your fellow 
readers. 
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Sound Playback 
The playback example uses 16-bit, stereo, 48 KHz sampling 

so there are 192 bytes of isochronous transfers per frame. I had 
similar issues with the MSC protocol as in the record example even 
using the 1.5 KB buffer shown in the lower half of Figure 10.5. I 
created a Windows console utility that removes the header from a 
standard WAV audio file so the audio generated on a Windows PC 
could be played back using the embedded Vinculum-II example.  
Again I would appreciate a helpful reader sending an OS X version. 
 

Open the Chapter10/SoundPlayback project and review 
main.c.  Again I wait for both devices to be attached and then I send 
sound.dat to the Cmedia audio device. 
 

So would you agree that audio on the Vinculum-II is easy? 
 
 
Position recorder. 

I originally planned this third example to be a variant of the 
first example; I would replace the audio adapter with a USB-based 
GPS sensor and would record the GPS position data. But the USB 
GPS sensor was out of stock so I had to change the example to use a 
serial GPS sensor and the result is, I believe, even more useful! Most 
GPS modules are serial-based but my dilemma was that the 
Vinculum-II only has one UART and I am already using this for my 
debug monitor. Yes, I could use the FT232R USB-to-serial cable but I 
decided to resolve my need for two UARTs in a more creative, and 
lower cost, way since having the GPS sensor on a serial port will be 
better for examples later in this chapter. 
 

My debug monitor displays progress messages on 
V2EvalTerm so, in fact, I only use the transmit half of the UART. This 
is the easy half since the Vinculum-II creates the data and does not 
have to synchronize with an external source. The SPI port could 
create the same data portion of the UART transmit signal but, of 
course, I also need to generate a start signal and two stop signals. 
Figure 10.6 shows my UART transmit signal created on the SPI port. 
UART data is sent lsb first so the first and every even character is a 
0x7F.  My UART data is sent in every odd character position and the 
final character is a 0xFF. The 0x7F generates my start signal and also 
seven stop signals. I run SPI at 6 MHz so V2EvalTerm is unaware of 
this hardware trick. I had to change the pin routing in initialize.c and 
needed to add a jumper on CN10 from pin 1 to pin 5 but otherwise this 
additional “UART” was a zero cost option. 
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Figure 10.6: Using the SPI master to create a UART TxD signal 
 

Having freed up the Vinculum-II UART I can now use it to 
receive data from the GPS module. The module runs at 4800 baud 
and starts transmitting standard NEMA sentences as soon that it is 
powered on. Figure 10.7 shows the default sentence generated by my 
Garmin GPS module; this NEMA data is standardized and extensively 
documented on the web.  The interested reader should Google 
“NEMA sentence". 
 
$GPRMC,222833,A,4554.5776,N,12357.6341,W,000.0, 

030.8,290810,017.8,E*61 
 

$GPRMC = sentence type RMC is Recommended Minimum 
222833 = time, 22:28:33 UTC (unified time) 
A = Active, locked onto satellite signals 
4554.5776, N = Latitude 45 degrees, 54.5776 mins North 
12357.6341, W = Longtitude 123 degrees, 57.6341 mins West 
000.0 = Speed over ground in knots (I am not moving!) 
0.30.8 = Track angle in degrees (not valid since I am not moving) 
290810 = 29th August 2010 
0.17.8, E = Magnetic variation at this position 
*61 = Checksum 

 
Figure 10.7: Decoding the default NEMA sentence  
 
Open the Chapter10/PositionRecorder project and review 

main.c. I wait for the GPS module to lock onto the satellite signals 
then gather data.  If adjacent samples are changing then I record this 
data in GPS0001.txt. When five adjacent samples show no movement 
I close the file and wait for changing data again. I saw no point 
recording data if the unit is stopped. The text files are standard, 
comma-delimited data files that and may be opened in Microsoft Excel 
or similar. The data can also be pasted into Google Earth and the 
recorded position data can be displayed on a map. 
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A GPS module is about $40,  a Vinculum-II module is about 
$20 and a  flash drive is about $5 so I don't understand why 
commercial GPS trackers retail for almost $200. And this is for the 
basic model!   We will add more features later in this chapter using 
that Vinculum-II USB port which is still available. 
 
 
Remote Control and Monitoring using a Cell Phone 

Texting, or sending and receiving text messages using the 
cellular SMS messaging service, has become an integral part of our 
modern lives. I have provided cell phones to all members of my 
immediate family and this has increased my peace of mind. Cell 
phone operators make it inexpensive to add additional phones onto a 
“family plan” so I have recently provided cell phones to my extended 
family. My home, my vacation home and all of the family vehicles now 
each have their own cell phone. I will use a building block approach to 
the next set of examples and explain how the Vinculum-II enables a 
car and a house to send and receive text messages.  
 

For texting you need a GSM/GPRS modem. This modem 
connects to the GSM/GPRS wireless network and needs a SIM card, 
or equivalent, to gain access to this network.  You can purchase 
stand-alone modems but the simplest approach for most people is to 
purchase, or even receive free, a cell phone which includes this 
modem.  You will need a cell phone with a data connector and it is 
encouraging to see that the phone industry moving towards a 
standardized micro-B, USB connector. I use Motorola and LG phones 
within my examples but, due to standardization within this industry, all 
cell phones should work. 

 
Connecting the phone to a Vinculum-II is simple:  use the 

phone’s data cable and plug it into USB host port 1. My example looks 
on host port 1 and the phone will be enumerated as a COMM class 
device. FTDI provide a communications class driver (CDC) so all we 
have to do is provide the applications code. My first phone example 
talks to 8 buttons and 8 LEDs. We will talk to a car and a house in 
subsequent examples. I connect an 8 way DIL switch to PortA and an 
8 segment DIL LED array to PortC (10 segment, but I only use 8); you 
saw the LED segment display in Figure 8.9 and the switch module 
uses the same design and construction. 

 
As it turns out, sending and receiving text messages via the 

USB connector is very easy. The cell phone has a command monitor 
and it is ready to accept commands after powering up. All commands, 
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and responses, are in ASCII and I recommend that you explore this 
interface a little before proceeding with the example. 

 
Plug your cell phone into an available USB socket on your 

PC. If your PC does not immediately recognize the device (a Windows 
PC does not have a default configuration for a CDC device - a large 
oversight in my opinion) then go to your cell phone vendor's website 
and download and install the driver. You may also want to install their 
messaging application too but we will not use it in my examples. 

 
The cell phone modem will appear to the PC as a serial COM 

port so spin up your favorite terminal application, such as 
HyperTerminal or CoolTerm, and connect the phone. I list a few 
commands in Figure 10.8; for a full list you should Google “SMS 
commands”. Try AT+CGMI and AT+CNUM first to discover your 
phones manufacturer and your phone number. 

 
AT+CGMI Display cell phone vendor 
AT+CNUM Display cell phone number and format 
AT+CMGF=1 Try to select English text mode 
 
Syntax of following commands is different in 
PDU or Text mode 
AT+CMGS Send message directly 
AT+CMGW Write text message to storage 
AT+CMSS Send a text message from storage 
AT+CMGD Delete text message 
AT+CMGL List text messages 
 
There are many more commands! 
 

Figure 10.8: SMS commands used in the texting example 
 
An important command to try is a AT+CMGF=1. This tries to 

switch your SMS messaging scheme to English text mode. This is 
more limiting than the native PDU mode but it is easier to use and to 
explain. If your phone responds with ERROR then do not be too 
concerned since my example operates in PDU mode as well. PDU 
means Protocol Data Unit and all cell phones support this mode which 
allows more control over the message and supports non-ASCII text 
such as Japanese and Arabic. 
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Text messages can be sent directly using the AT+CMGS 
command or can be prepared in local storage and sent later using the 
AT+CMGW and AT+CMSS commands. My example sends text 
messages directly but you could easily modify it to create some fixed 
messages that can be sent later. 

 
I check for received messages by issuing a AT+CMGL 

command periodically. My example reads in any new messages, 
interprets the message and create some action - initially this will be 
turning LEDs on and off. A received message also contains the phone 
number of the sender - I check this and reject any messages that were 
not sent from a predefined number (or numbers). This way I can 
prevent random text messages from causing the Vinculum-II to 
implement commands. 

 
Open the Chapter10/Texting project and review main.c.  

There are two main threads:  Buttons monitors the 8 switches on 
PortA and CheckMessages periodically checks the cell phone for 
received messages. If a button change is detected then a text 
message is sent with the current button positions to a pre-determined 
phone number. A duplicate system (Vinculum-II, 8 buttons, 8 LEDs 
and a cell phone) receives this message and sets its LEDs to the 
received pattern. Similarly change in the switches on this duplicate 
system will cause the LEDs on the first Vinculum-II to system to 
change.  We have built a simple remote monitoring and control system 
using cell phones. 

 
Now expand your mind a little. The switches could be 

replaced by any type of sensor and the LEDs could be replaced by 
any time any type of actuator; examples will follow. The text messages 
would be customized to match the sensors and actuators. Imagine 
getting a text message “The basement is flooding”. You will respond 
with “Turn on sump pump”.   Or you receive “Movement detected in 
vacation home garage”; you respond with “Release the Dragon”.  With 
very little effort you can build up a Vinculum-II plus cell phone system 
that gives you James Bond like features on your personal cell phone.  
Let's look at two examples now. 

 
 

Precious item locator. 
I installed the following example on my son's motorcycle but it 

has applications to protect any kind of mobile precious item, such as a 
child. I combined the cell phone example with the GPS example. I can 
send a text message to the motorcycles phone asking “Where are 
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you?”. Note that I did not send it to my son's phone since his answers 
are not always accurate. The Vinculum-II gets the motorcycles 
position from the GPS sensor and sends it back to me as a text 
message containing the world coordinates. I paste these into Google 
Earth and I now know exactly where the bike is within 3 meters. 
Imagine how useful this would be if the bike were stolen. Or if it was 
involved in some kind of accident; being able to exactly locate the bike 
would be invaluable. 

 
The Vinculum-II continually monitors the GPS data stream 

and I get text messages if the bike speed exceeds 100 miles an hour. 
I also get text messages if the bike leaves a predetermined area. This 
would be particularly valuable if the unit were installed in a child's 
backpack, or miniaturized and fitted into a child’s clothing. 

 
I've installed the same hardware in my wife's Jeep. I also 

purchased an ODB-II monitor from www.elmscan.com and, to my 
delight, it enumerates as an FT232 device. My goal was to identify car 
problems such as “Airbag deployed" but I have not been able to figure 
out the protocol to do this. I would welcome help from any car 
enthusiast reader who could help me with this application. 

 
Open the Chapter10/PE_Locator project and review main.c. 

There is no new theory here since it is a combination of previous 
example building blocks. There are many ways that this design could 
be extended and, don't forget, that the application includes a cell 
phone which can always be used to make voice calls in an emergency 
situation. 

 
 

Home/office monitoring and control. 
In this example I replace the simple buttons and lights of the 

earlier example with sensors and actuators that monitor and control 
the real world. Rather than reinventing the wheel I decided to use an 
existing system; I chose X10 since their products are available on a 
worldwide basis and therefore all readers of this book can benefit.  For 
more details visit www.x10.com and try to ignore the heavy marketing. 

 
A typical X10 system, shown in Figure 10.9, uses two 

methods of signaling; power line control (PLC) and RF. Power line 
signaling sends patterns of bits over the home or office mains wiring 
while RF signaling sends patterns of bits over the air using an 
unlicensed band. The voltages, mains frequency and RF frequency 
are different in various parts of the world but we need not be 
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concerned about these details. An interesting reader should Google 
“X10 signaling” where many details and ideas can be found. 

 
An X10 system can address up to 256 output devices which it 

divides into 16 house codes, A through P, each with 16 unit codes, 1 
through 16. My example also uses this convention. There are also 16 
commands that can be sent, such as ON, OFF, DIM, BRIGHT, etc. 
The devices can be lights that can be dimmed, appliances that turn on 
or off or devices that make a sound. More sophisticated devices, such 
as a room thermometer are also available. Input signals can be 
generated from wireless remote controls, button boxes, motion 
sensors, door and window sensors or even a custom signal. An X10 
system is readily expandable to meet your needs. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10.9: X10 system with many real-world inputs and outputs 

 
From this examples perspective, the most important 

component is the CM15A controller, called the CM15Pro in Europe, 
since this is the bridge between USB and the PLC and RF signaling. 
The CM15A is a non-standard, low-speed USB device (it does not 
conform to any class specification) which has an interrupt out endpoint 
used to send X10 commands and interrupt in endpoint that repeats 
the PLC and RF signals it receives. This low-level signaling scheme is 
not officially documented but it took me less than a day to decode the 
essential elements. 

 
Open the Chapter10/X10Spy project and review main.c. After 

finding the CM15A controller the program waits for activity on the 
interrupt in endpoint then displays the raw data and an ASCII 
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interpretation of what I determined the bit patterns represented. To 
debug this example I used two CM15A’s, one connected to a PC that 
was running the Activity Monitor of the ActiveHome application and 
the other connected to a Vinculum-II running the example program. I 
then used an X10 button box, MC10A, and an RF remote, HR12A, to 
sequence through the house and unit codes. The X10 product line is 
broad and I also tested motion sensors, keyfobs, wireless switches 
etc. and they all generated a signal that was recognizable by my spy 
program. X10 also has a range of security products which are 
received by the CM15A but do not generate X10 PLC signals - I'm 
sure there was a good marketing reason why it does this!  

I recommend that you explore a new X10 input device with 
this spy program before integrating it into your Vinculum-II based 
control and monitoring system. I had no problems with X10 output 
modules such as light controller, appliance controller, horn, siren, etc. 

 
From the Vinculum-II’s point of view it has to create an 

encoded packet and send it, via the interrupt out endpoint, to the 
CM15A to control a real world device. It must interpret an encoded 
packet received from the CM17A on the interrupt in endpoint to 
determine which part of the real world is signaling. 

 
Open the Chapte10/X10_Texting project and review main.c. 

This is a combination of the X10 spy project and the texting project. 
Motion sensors detect movement once armed and will send a text 
message if activated. I can send a text message that will turn on lights 
or appliances. You can extend this example to monitor and control any 
aspect of your home or office. 

 
 
Chapter summary. 

We have only started to scratch the surface of available USB 
devices and, unfortunately, this chapter is already over the 10 page 
limit!  I will have to convince FTDI that another edition is needed!  
What would you like to see?  Send feedback to John@USB-by-
example.com. I would like to look at Web Cams and use the 
Vinculum-II to record data; the ability to playback the last 3 minutes 
prior to an incident would be GREAT. USB-to-network dongles is 
another large topic area; would you prefer Ethernet or Bluetooth 
connectivity?  

 
The dual host Vinculum-II is enabling a new range of low-cost 

products and I hope that this chapter has fueled some of your ideas or 
has helped you solve some of your pending problems. 
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Chapter 11: Other design considerations. 
 
This chapter contains important Vinculum-II information that I 

could not fit into the other chapters of Part 2! All of the Vinculum-II 
examples so far have been implemented with a single-chip but what 
happens when you need more peripheral resources; the first section 
of this chapter explores expansion options. I have used the 
V2EvalBoard for my examples since this was straight forward; I also 
demonstrated how the same example software would run on FTDI's 
range of Vinculum-II DIL modules using a debugger module. FTDI are 
about to announce (as of October 2010) an Arduino-inspired 
development platform called Vinculo; this is covered in the second 
section. Some of you will need features such as galvanic isolation and 
plug-in device functionality - I explore these component orientated 
issues in the third section. 

 
 

Vinculum-II expansion options 
The first obvious is expansion mechanism is the SPI master; 

we saw in Part 1 that there are many SPI devices available to expand 
digital I/O, analog I/O and special-purpose I/O. Vinculum-II’s SPI 
master peripheral has 2 chip select outputs which, with an external 
decoder, could generate from 2 to 4 peripheral select lines. You can 
use other I/O lines to create more chip selects. Figure 11.1 shows 
some SPI expansion opportunities. Note that device 4 is another 
Vinculum-II! Although I don't expect you to use two Vinculum-II’s in 
this manner, I did want to point out that the Vinculum-II does have an 
SPI slave peripheral (in fact it has 2) so you can use it as an attached 
slave device as well as a stand-alone master device. A more typical 
use of this attached mode is the Vinculum-II providing a self-contained 
USB subsystem on behalf of a host CPU. 

 
 
 
 
 
 
 
 
 
 
 

Figure 11.1: Using SPI to add Vinculum-II peripheral resources 
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The first resource I run out of when implementing Vinculum-II 
designs is the UART. Many of FTDI’s customers must have provided 
similar feedback since FTDI have introduced an FT4232 Hub DIL 
module. A block diagram of this module is shown in Figure 11.2; it 
contains a high-speed hub and an FT4232H connected to one of the 
downstream ports. All four channels of the FT4232H are routed to the 
DIL connectors making it easy to prototype hardware. Remember from 
Part 1 that each channel can be a UART, SPI, I2C, FIFO, or a custom 
configuration. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11.2: FT4232 Hub module adds USB ports and peripherals 
 
Note that the upstream connection is a USB-A plug rather 

than a mini-B socket as found on the FT4232H mini-modules. This 
allows the FT4232 Hub to be connected directly to one of the 
Vinculum-II DIL modules and the combination then plugs neatly into a 
0.1 inch solderless breadboard. The FT4232 Hub is shown in Figure 
11.3 and this gives you ample, convenient I/O expansion for most 
Vinculum-II projects. And if you want even more I/O then you can 
daisy chain FT4232 Hub modules together! You must provide +5.0 V 
power from somewhere but, rest assured, you will not be limited in I/O 
expansion capabilities. 
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Figure 11.3: FT4232 Hub provides easy large system prototyping 
 
When connected to a Vinculum-II the FT4232H operates at 

full speed so the output baud rate has a maximum value of 6Mb rather 
than the high-speed 30Mb. This is ample for most embedded 
applications. As an exercise I ported some of the Part 1 examples to 
the Vinculum-II with an attached FT4232 hub; you can review these in 
the Chapter 11 directory. FTDI includes an FT232 driver and the 
FT4232 hub will enumerate as four channels; you can attach to each 
channel and then individually set it up as a UART, SPI, MPSSE mode 
etc. The Vinculum-II operating system handles all of the complexity 
and we just use these additional peripheral resources within our 
application program. 

 
 
 

Alternate development platform. 
There is a lot of industry buzz surrounding the Arduino 

platform. It partitions the hardware a little differently than most 
microcontroller development systems; the CPU board has numerous 
I/O connections and expansion I/O is plugged on to this board. These 
I/O boards are called Shields and the industry has created a wide 
range so you should be able to purchase the expansion I/O you need 
and this will save you development time. You can also purchase low-
cost prototyping boards for unique I/O requirements. 

 
FTDI's Vinculo product is shown in Figure 11.4. 
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Figure 11.4: The Arduino-inspired Vinculo product 
 
The Vinculo is mechanically compatible with the Arduino 

standard which means that all of the available I/O shield boards will 
plug directly on to the Vinculo. The Vinculo has an additional row of 
I/O pins giving the board greater I/O expansion capability - for 
example, the logic analyzer from Chapter 8 may be attached.  

 
When compared with the V2EvalBoard, the Vinculo has host 

and device connectors rather than two host connectors; the SmartIO 
example from Chapter 9 works with the only I/O configuration 
changes; see the Chapter11/SmartIO project.  The Vinculo does not 
have an integrated debugger nor an integrated FT4232 component 
therefore development with the Vinculo takes the same form as 
development with the Vinculum-II DIL modules.  The Vinculo includes 
a connector to interface to an optional Vinculum-II debugger module. 

 
At the time of writing (October 2010) FTDI only offer Arduino-

compatible hardware. A full Arduino development system also 
includes Arduino open source development software. You should 
check FTDI's website for future announcements with respect to 
software. Today, software development for the Vinculo would use the 
IDE and tools presented in Part 2 of this book. 
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One the Vinculo's claims to fame is, of course, the inclusion of 
a USB host port. So, out-of-the-box, the Vinculo can already talk to 
flash drives, mice, keyboards, joysticks, cell phones, digital still 
cameras, X10 home automation and security, to mention a few. In fact 
all of the examples presented in this Part 2 can be readily ported to 
the Vinculo; some will need to convert the mini-B device connector to 
a USB A socket but that's just a cable and 100 !F capacitor! 

 
The introduction of Vinculo now gives you three hardware 

choices for Vinculum-II development; V2EvalBoard, DIL modules and 
Vinculo. Which should you choose? Your I/O requirements should 
guide your choice. If your project hardware is available on an Arduino 
shield then the choice is easy;  if it is not available then do you prefer 
to use solderless breadboard's or do you prefer to solder prototype 
hardware on an I/O shield board or a module that plugs onto the 
V2EvalBoard's I/O connectors? Whichever approach you take, the 
software development process using the Vinculum-II operating system 
will be the same.  All three are good choices for rapid product 
development. 

 
 

Component development issues. 
The FTDI-supplied development hardware does not address 

issues such as galvanic isolation required for medical equipment or 
the construction of devices that must plug into a USB-A socket. 

 
It used to be very difficult to isolate a USB connection since 

the two data lines, D+ and D-, are bidirectional and there is not a 
signal that indicates which direction the signals are being driven. An 
isolator needs to understand the USB protocol to be able to correctly 
drive the signals. Analog devices introduced two components, the 
ADuM3160 and the ADuM4160, that feature 2.5 KV and 5.0 KV rms 
isolation. These integrated components include all the circuitry 
necessary to cut the USB cable and provide an isolated connection. 
The datasheet also includes layout requirements for reliable operation. 

 
If you don't want, or don't have time to prototype an isolation 

board then you can purchase Analog Devices’ reference design 
implemented into a ready-to-use product from www.bb-elec.com.  
Their UH401 product is shown in Figure 11.5.  Note that the USB 
connectors in Figure 11.5 are orange. This indicates a high retention 
USB connector which is recommended if you are designing products 
for the industrial or medical segments.  You can get more information 
on these connectors from www.samtec.com. 
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Figure 11.5: USB isolation product from www.bb-elec.com 
 
B & B Electronics also provide an isolated USB hub and 

isolated USB to serial converters that are shown in Figure 11.6.  I 
recommend that you visit their website since they have many design 
recommendations and products for the industrial segment. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11.6: Other USB products from www.bb-elec.com 
 



© 2010, John Hyde, USB Design By Example                 Revision 2.01 Page 129 

USB Device Design. 
If you are designing a flash drive type USB device then you 

should consider a “Flipper” USB-A plug described at 
www.flipperUSB.com and shown in Figure 11.7.  This is a clever idea 
that will increase customer satisfaction in your project. When you plug 
a USB-A plug into a USB A socket, you have less than a 50% chance 
that you will plug in it in correctly – the percentage is lower for children 
and older folks. If you are wrong then you flip the plug over and try 
again. With the “Flipper” plug you get it right 100% of the time since it 
is constructed to plug in both ways! The tolerances within the 
connector specification allow a thin circuit board with contacts on both 
sides to be centered in the plug. This simple idea has taken 15 years 
to come to fruition. 

 
The folks at Flipper are offering samples to the readers of this 

book – go to www.FlipperUSB.com to get yours! 
 
 
 

Standard USB-A Plug 
with plastic insert  
supporting one row 
of connections 
 
 
 
 
 
FlipperUSB A-Plug 
with thin PCB 
supporting two rows 
of connections. 

 
 

Figure 11.7: The FlipperUSB A-Plug is reversible 
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Chapter summary. 
I hope that you will have had as much fun reading this book 

as I have had writing it. I am most impressed with the Vinculum-II 
since it's dual USB host/slave controllers enable a wider range of 
problems to be solved with USB.  FTDI's Vinculum-II toolset also 
make it easy to develop and debug application programs and I trust 
that my examples have created solutions to some of your design 
challenges and have given you some good starting points. 

 
This book is but one of the development aides available for 

the Vinculum-II. You should visit www.ftdichip.com often to look at 
their applications notes, data sheets and other examples.  The IDE 
comes with a variety of examples covering USB devices that I have 
not mentioned in this book; such as a still image camera, web cam 
and printer – there are many examples to build upon that get you up 
and running quickly. 

 
Until the next edition, happy developing!   John. 
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Glossary: 
 
BOMS – Bulk Only Mass Storage – FTDI use this to describe their 
implementation of the Mass Storage Class driver. 
DIL – Dual In Line, typically on a 0.1 inch pitch such that it will plug 
into a solderless breadboard or mount on a prototype board. 
HID – Human Interface Device. One of the standard USB classes. 
I2C – Inter-Integrated Circuit. A serial expansion bus with a bi-
directional Data signal and a Clock signal. Patented and licensed by 
Philips (now NXP). 
IDE – Integrated Development Environment.  A collection of tools 
designed to make the development process more productive. 
LA – Logic Analyser. 
MSC – Mass Storage Class. One of the standard USB classes. 
OS – Operating System.  In this book it is a USB-aware OS such as 
Windows (all flavors since Win98 Gold), Mac OS X and Linux. 
PC – Personal Computer.  In this book this runs a USB-aware OS. 
SPI – Serial Peripheral Interface. A synchronous serial expansion bus 
with a DataIn, DataOut, Clock and Chip Select signals. 
TLA – Three Letter Acronym.  This book has a lot of them! 
USB IF – USB Implementers Forum are the organizing body for USB 
matters.  They also manage the USB Compliance Testing. 
WHQL – Microsoft’s Windows Hardware Quality Laboratory. 
Wintel – An Intel x86-based PC running Windows. 
VOS – Vinculum-II Operating System. 
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Appendix A: Examples and Schematics 
 
The example source code can be found in the Examples/ directory. 
 
I designed the examples to give you a good start on your projects but 
they should NOT be considered ‘production ready’.  In fact, the legal 
folks required me to add the following disclaimer: 
This software product is provided as is without any warranty of any kind, either 
express or implied, including, but not limited to, the implied warranty of 
merchantability and fitness for a particular purpose.  Neither USB Design By 
Example nor FTDI nor their dealers or distributers assumes any liability for 
any alleged or actual damages arising for the use of, or the inability to use, 
this software.  
 
Installing the examples 
The examples are provided in multi-platform source code which may 
be copied and used on your PC.  I have provided the Windows 
versions as Visual Studio project files and the OS X/Linux versions as 
XCODE project files.  The source code is identical for all platforms and 
the project files will enable you to get up and running instantly. 

 
Schematics  
 
Example 1: Bit IO 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Notes:  

Dotted resistors are inside the TTL-232R cable 
Note colours of cable connection 
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Example 2: Bit to I2C Converter 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example 3: I2C to 8 bit port 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



© 2010, John Hyde, USB Design By Example                 Revision 2.01 Page 134 

Change History 
 
Changes from Revision 1.0 

Various typographical errors fixed 
Chapter 2 examples extended 
Chapter 2 examples implemented on solder-less breadboard 
Chapter 4 example implemented on solder-less breadboard 
Chapters 5, 6 and 7 added 

 
Changes from Revision 1.5 

Various typographical errors fixed 
Chapters 8, 9, 10 and 11 added 

 
Changes from Revision 2.0 
 Added section “Stages 7.1 & 7.2” in Chapter 9 
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